留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿井雷达波走时层析成像精度的影响分析及参数优化研究

孙明浩 许献磊 张迪

孙明浩, 许献磊, 张迪. 矿井雷达波走时层析成像精度的影响分析及参数优化研究[J]. 矿业科学学报, 2022, 7(1): 134-142. doi: 10.19606/j.cnki.jmst.2022.01.013
引用本文: 孙明浩, 许献磊, 张迪. 矿井雷达波走时层析成像精度的影响分析及参数优化研究[J]. 矿业科学学报, 2022, 7(1): 134-142. doi: 10.19606/j.cnki.jmst.2022.01.013
Sun Minghao, Xu Xianlei, Zhang Di. Research on the influence analysis of Radar traveling time tomography in mine and parameter optimization[J]. Journal of Mining Science and Technology, 2022, 7(1): 134-142. doi: 10.19606/j.cnki.jmst.2022.01.013
Citation: Sun Minghao, Xu Xianlei, Zhang Di. Research on the influence analysis of Radar traveling time tomography in mine and parameter optimization[J]. Journal of Mining Science and Technology, 2022, 7(1): 134-142. doi: 10.19606/j.cnki.jmst.2022.01.013

矿井雷达波走时层析成像精度的影响分析及参数优化研究

doi: 10.19606/j.cnki.jmst.2022.01.013
基金项目: 

北京市科技计划 Z201100004520019

北京市科技计划 Z191100001419005

煤炭开采水资源保护与利用国家重点实验室开放基金 SHJT-17-42.6

详细信息
    作者简介:

    孙明浩(1996—),男,浙江湖州人,博士研究生,主要从事探地雷达仪器开发等方面的研究工作。Tel:010-62339358,E-mail:smh34567@126.com

  • 中图分类号: P631.2

Research on the influence analysis of Radar traveling time tomography in mine and parameter optimization

  • 摘要: 矿井工作面内的隐伏灾害源是矿井安全生产的主要隐患,雷达波走时层析成像技术可实现大跨度开采区内隐伏灾害源的高精度探测。本文首先提出了层析成像精度评价标准,包括反演速度场和实际速度场速度差的方差、反演异常体中心偏离程度和大小偏离程度;其次通过正演模拟分析不同点间距、不同出射角度和不同反演网格参数对矿井地质雷达层析成像精度的影响规律,并对观测系统及反演参数进行优化;最后应用优化参数进行矿井雷达波走时层析成像探测实验,结果表明,在100 m跨度范围内可有效进行异常体的探测。本研究为矿井大跨度工作面内隐伏灾害源的快速精细探测提供有效的技术支撑。
  • 图  1  矿井雷达波走时层析成像技术示意图

    d—观测点间距,m; θ—观测点间距,(°);m—反演网格宽度,m;n—反演网格长度,m;X—发射方向位置,m;Y—测线方向位置,m;☆—发射点;★—接收点

    Figure  1.  Schematic diagram of TIIRTT in mine

    图  2  正演模型示意图

    Figure  2.  Schematic diagram of forward model

    图  3  不同观测点间距条件下反演结果

    v—电磁波传播速度,m/ns

    Figure  3.  Inversion result by different point spacing

    图  4  指标对比

    Figure  4.  Index comparison

    图  5  不同出射角度条件下反演结果

    Figure  5.  Inversion result by different transmitting angle

    图  6  指标对比

    Figure  6.  Index comparison

    图  7  不同反演网格条件下的反演结果

    Figure  7.  Inversion result by different inversion grid

    图  8  指标对比结果

    Figure  8.  Index comparison results

    图  9  反演结果

    Figure  9.  Inversion result

    图  10  测线布置示意

    Figure  10.  Layout diagram of the measuring line

    图  11  反演结果

    Figure  11.  Inversion result graph

    图  12  反演结果对比

    Figure  12.  Comparison of inversion results

    表  1  专家评分结果

    Table  1.   Results of the expert rating

    专家编号 指标
    α β γ
    1 0.15 0.45 0.40
    2 0.25 0.40 0.35
    3 0.20 0.35 0.45
    4 0.25 0.45 0.30
    5 0.15 0.35 0.50
    平均 0.20 0.40 0.40
    权重/% 20 40 40
    下载: 导出CSV

    表  2  评价参数及Y

    Table  2.   The evaluation indexes and Y value

    实验组 d/m α β/m γ/m2 Y
    1 2 0.011 1 6.534 7 87.979 4 0.399 9
    3 0.008 7 9.387 8 43.959 2 0.397 7
    4 0.009 2 7.244 0 130.517 8 0.505 4
    5 0.012 4 9.998 9 54.332 3 0.588 8
    2 2 0.008 1 8.273 4 66.431 3 0.261 1
    3 0.007 7 8.249 9 46.026 8 0.200 0
    4 0.009 6 8.972 6 101.621 3 0.590 2
    5 0.010 8 9.072 2 172.228 0 0.800 0
    下载: 导出CSV

    表  3  评价参数及Y值结果

    Table  3.   Results of the evaluation indexes and Y value

    θ/(°) α β/m γ/m2 Y
    30 0.018 6 0.673 8 397.167 0 0.560 0
    35 0.005 9 8.793 8 150.653 8 0.493 5
    40 0.007 3 8.544 2 173.666 3 0.515 6
    45 0.008 0 9.499 2 47.925 4 0.462 5
    50 0.008 7 9.387 8 43.959 2 0.463 6
    下载: 导出CSV

    表  4  评价参数及Y值结果

    Table  4.   Results of the evaluation indexes and Y value

    m×n/m×m α β/m γ/m2 Y
    1×1 0.005 7 9.501 5 63.230 7 0.548 5
    2×2 0.008 0 9.499 2 47.925 4 0.461 7
    3×3 0.008 3 9.005 4 58.167 7 0.425 8
    4×4 0.018 1 8.438 5 81.778 5 0.560 0
    下载: 导出CSV

    表  5  评价参数结果

    Table  5.   Results of the evaluation indexes

    α β/m γ/m2
    0.000 328 13.726 4 297.454 5
    下载: 导出CSV

    表  6  参数及探测精度评价

    Table  6.   Parameters and accuracy evaluation results

    实验组 d/m θ/(°) m×n/m×m Y
    1 3 45 2×2 0.289 2
    2 3 45 3×3 0.213 5
    3 3 50 2×2 0.325 3
    4 3 50 3×3 0.452 8
    5 6 45 2×2 0.678 3
    6 6 45 3×3 0.725 8
    7 6 50 2×2 0.763 7
    8 6 50 3×3 0.687 5
    下载: 导出CSV
  • [1] Leopold M, Völkel J, Huber J, et al. Subsurface architecture of the Boulder Creek Critical Zone Observatory from electrical resistivity tomography[J]. Earth Surface Processes and Landforms, 2013: 38: 1417-1431. http://czo.colorado.edu/pub/2013/Leopold.ESPL2013.pdf
    [2] Liu S X, Liu X T, Meng X, et al. Application of time-domain full waveform inversion to cross-hole radar data measured at Xiuyan jade mine, China[J]. Sensors, 2018, 18(9): 25-35. http://www.onacademic.com/detail/journal_1000040848503310_fe4e.html
    [3] 赵旭辰, 李雪健, 曹芳智. 井间电磁波CT在煤矿采空区探测效果分析[J]. 物探与化探, 2021, 45(4): 1088-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202104032.htm

    Zhao Xuchen, Li Xuejian, Cao Fangzhi. An analysis of the detection effect of cross-well electromagnetic wave CT in coal mine goaf[J]. Geophysical and Geochemical Exploration, 2021, 45(4): 1088-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202104032.htm
    [4] 李东, 杜文凤, 许献磊. 矿井地质雷达超前探测方法及应用研究[J]. 煤炭科学技术, 2018, 46(7): 223-228.

    Li Dong, Du Wenfeng, Xu Xianlei. Study on advanced detection method and application of mine geological radar[J]. Coal Science and Technology, 2018, 46(7): 223-228.
    [5] 董全令. 井下隐伏构造灾害源低频探地雷达CT探测研究[J]. 能源与节能, 2019(7): 87-88, 103. doi: 10.3969/j.issn.2095-0802.2019.07.040

    Dong Quanling. Research on CT detection of underground hidden structural disaster source by low frequency ground penetrating radar[J]. Energy and Energy Conservation, 2019(7): 87-88, 103. doi: 10.3969/j.issn.2095-0802.2019.07.040
    [6] Vidale J E. Finite-difference calculation of traveltimes in three dimensions[J]. GEOPHYSICS, 1990, 55(5): 521-526. doi: 10.1190/1.1442863
    [7] Carbonel D, Rodríguez V, Gutiérrez F, et al. Evaluation of trenching, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) for sinkhole characterization[J]. Earth Surface Processes and Landforms, 2014, 39(2): 214-227. doi: 10.1002/esp.3440
    [8] Schmitt M, Stilla U. Maximum-likelihood-based approach for single-pass synthetic aperture radar tomography over urban areas[J]. IET Radar, Sonar and Navigation, 2014, 8(9): 1145-1153. doi: 10.1049/iet-rsn.2013.0378
    [9] 杜翠. 矿井复杂构造雷达波走时层析成像反演算法研究[D]. 北京: 中国矿业大学, 2015.
    [10] Tronicke J, Tweeton D R, Dietrich P, et al. Improved crosshole radar tomography by using direct and reflected arrival times[J]. Journal of Applied Geophysics, 2001, 47(2): 97-105. doi: 10.1016/S0926-9851(01)00050-7
    [11] 曾奇, 余海忠, 孙泽会. 钻孔雷达层析成像法探测地下岩溶的数值模拟[J]. 城市勘测, 2020(3): 181-187. doi: 10.3969/j.issn.1672-8262.2020.03.043

    Zeng Qi, Yu Haizhong, Sun Zehui. Numerical simulation of underground Karst detection by borehole radar tomography[J]. Urban Geotechnical Investigation & Surveying, 2020(3): 181-187. doi: 10.3969/j.issn.1672-8262.2020.03.043
    [12] 刘征宇, 庞永昊, 王传武. 基于不完整边界先验信息的跨孔电阻率CT反演方法研究[J]. 岩土工程学报, 2019, 41(6): 1124-1132.

    Liu Zhengyu, Pang Yonghao, Wang Chuanwu. Cross-hole resistivity inversion method constrained by prior information of incomplete boundary[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1124-1132.
    [13] Cheng F, Liu J P, Wang J, et al. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection[J]. Journal of Applied Geophysics, 2016, 134: 246-252. doi: 10.1016/j.jappgeo.2016.09.014
    [14] 张业. 跨孔雷达层析成像探测地下异常体的数值模拟[J]. 铁道勘察, 2017, 43(5): 66-69. doi: 10.3969/j.issn.1672-7479.2017.05.020

    Zhang Ye. Numerical simulation of cross-hole radar tomography in subsurface anomaly detection[J]. Railway Investigation and Surveying, 2017, 43(5): 66-69. doi: 10.3969/j.issn.1672-7479.2017.05.020
    [15] 孟旭, 刘四新, 吴俊军, 等. 时间域跨孔雷达全波形反演及实际应用[J]. 世界地质, 2016, 35(1): 256-263. doi: 10.3969/j.issn.1004-5589.2016.01.027

    Meng Xu, Liu Sixin, Wu Junjun, et al. Full waveform inversion of time-domain cross-hole radar and its field application[J]. Global Geology, 2016, 35(1): 256-263. doi: 10.3969/j.issn.1004-5589.2016.01.027
    [16] Bhuiyan M A, Al Hasan M. An iterative MapReduce based frequent subgraph mining algorithm[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 608-620. doi: 10.1109/TKDE.2014.2345408
    [17] 聂万印. 采煤工作面内隐伏断层震波CT联合反演技术研究与应用[J]. 煤炭与化工, 2019, 42(5): 69-72.

    Nie Wanyin. Study and application of joint inversion technology of concealed fault wave CT in coal mining face[J]. Coal and Chemical Industry, 2019, 42(5): 69-72.
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  161
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-12-02
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回