留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面波多道分析法精细探测浅部煤层采空区应用研究

杨智 李宇 赵飞 卫红学 管建博 靳朝彬 赵猛

杨智, 李宇, 赵飞, 卫红学, 管建博, 靳朝彬, 赵猛. 面波多道分析法精细探测浅部煤层采空区应用研究[J]. 矿业科学学报, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011
引用本文: 杨智, 李宇, 赵飞, 卫红学, 管建博, 靳朝彬, 赵猛. 面波多道分析法精细探测浅部煤层采空区应用研究[J]. 矿业科学学报, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011
Yang Zhi, Li Yü, Zhao Fei, Wei Hongxue, Guan Jianbo, Jin Chaobin, Zhao Meng. Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves[J]. Journal of Mining Science and Technology, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011
Citation: Yang Zhi, Li Yü, Zhao Fei, Wei Hongxue, Guan Jianbo, Jin Chaobin, Zhao Meng. Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves[J]. Journal of Mining Science and Technology, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011

面波多道分析法精细探测浅部煤层采空区应用研究

doi: 10.19606/j.cnki.jmst.2022.01.011
基金项目: 

国家重点研发计划 2018YFC0807803

陕西省自然科学基础研究计划 2019JLM8

长安大学中央高校基本科研业务费专项资金 300102260203

详细信息
    作者简介:

    杨智(1994—),男,贵州凯里人,硕士研究生,主要从事浅地表面波勘探方面的研究工作。Tel: 18285533771,E-mail: 2019126070@chd.edu.cn

    通讯作者:

    李宇(1983—),男,湖北孝感人,博士,讲师,主要从事浅地表地震勘探方面的研究工作。Tel: 18729298221,E-mail: liyupa@chd.edu.cn

  • 中图分类号: P315.9

Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves

  • 摘要: 为精细探测浅部煤层采空区分布范围,在相移法中引入低频聚焦因子,提出一种低频聚焦型相移法,其具有在短接收排列上提取低频频散能量的优势。模拟结果表明:该方法显著改善了频散能量在低频端的聚焦性,扩展了可拾取的频带范围,增大了探测深度,缩短了计算频散能量所需的排列长度,提高了面波多道分析方法(MASW)的横向分辨率。浅部煤层采空区实测试验结果表明:采用低频聚焦型相移法提取频散能量,通过MASW方法获得了高精度的横波速度水平切片,可以清晰识别出采空区范围、保安煤柱位置及其几何形态。证实了低频聚焦型相移法可提高MASW横向分辨率的有效性与精细探测浅层煤层采空区的可行性。
  • 图  1  层状模型

    Figure  1.  The layered model

    图  2  正演地震记录

    Figure  2.  The forward seismic record

    图  3  频散能量图谱

    Figure  3.  Dispersion energy spectrum

    图  4  单频频散能量曲线

    Figure  4.  The single frequency dispersion energy graph

    图  5  测线布设

    Figure  5.  The survey line layout

    图  6  原始地震记录及频谱

    Figure  6.  Original seismic record and spectrum

    图  7  频散能量图

    Figure  7.  Dispersion energy spectrum

    图  8  频散曲线

    Figure  8.  Dispersion curves

    图  9  横波速度水平切片(深度65 m)

    Figure  9.  Horizontal section of S-wave velocity (depth 65 m)

  • [1] 刘菁华, 王祝文, 朱士, 等. 煤矿采空区及塌陷区的地球物理探查[J]. 煤炭学报, 2005, 30(6): 715-719. doi: 10.3321/j.issn:0253-9993.2005.06.008

    Liu Jinghua, Wang Zhuwen, Zhu Shi, et al. The geophysical exploration about exhausted area and sinking area in coal mine[J]. Journal of China Coal Society, 2005, 30(6): 715-719. doi: 10.3321/j.issn:0253-9993.2005.06.008
    [2] 王鹏, 程建远, 姚伟华, 等. 积水采空区地面-钻孔瞬变电磁探测技术[J]. 煤炭学报, 2019, 44(8): 2502-2508.

    Wang Peng, Cheng Jianyuan, Yao Weihua, et al. Technology of detecting water-filled goaf beside borehole using downhole transient electromagnetic method[J]. Journal of China Coal Society, 2019, 44(8): 2502-2508.
    [3] 崔芳鹏, 武强, 林元惠, 等. 中国煤矿水害综合防治技术与方法研究[J]. 矿业科学学报, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141

    Cui Fangpeng, Wu Qiang, Lin Yuanhui, et al. Prevention and control techniques & methods for water disasters at coal mines in China[J]. Journal of Mining Science and Technology, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141
    [4] 王家臣, Jürgen Kretschmann, 李杨. 关闭煤炭矿区资源利用与可持续发展的几点思考[J]. 矿业科学学报, 2021, 6(6): 633 -641. https://d.wanfangdata.com.cn/periodical/kykxxb202106001

    Wang Jiachen, Jürgen Kretschmann, Li Yang. Reflections on resource utilization and sustainable development of closed coal mining areas[J]. Journal of mining science and technology, 2021, 6(6): 633 -641. https://d.wanfangdata.com.cn/periodical/kykxxb202106001
    [5] 杨德义, 王贇, 王辉. 陷落柱的绕射波[J]. 石油物探, 2000, 39(4): 82-86. doi: 10.3969/j.issn.1000-1441.2000.04.011

    Yang Deyi, Wang Yun, Wang Hui. Difraction waves from fallen pillars[J]. Geophysical Prospecting for Petroleum, 2000, 39(4): 82-86. doi: 10.3969/j.issn.1000-1441.2000.04.011
    [6] 杨双安, 宁书年. 老窑采空区的地震探测与研究[J]. 中国煤田地质, 2004, 16(1): 44-47. doi: 10.3969/j.issn.1674-1803.2004.01.015

    Yang Shuangan, Ning Shunian. Research on seismic surveying goafing of the old mine[J]. Coal Geology of China, 2004, 16(1): 44-47. doi: 10.3969/j.issn.1674-1803.2004.01.015
    [7] 卫红学, 查文锋, 冯春龙. 采空区上地震时间剖面的特征分析[J]. 地球物理学进展, 2014, 29(4): 1808-1814.

    Wei Hongxue, Zha Wenfeng, Feng Chunlong. Analysis of characteristics of seismic section in goaf area[J]. Progress in Geophysics, 2014, 29(4): 1808-1814.
    [8] 苑昊, 刘佳朋, 姜在兴. 煤矿采空区四维地震特征分析及识别方法: 以淮南煤田张集矿区为例[J]. 现代地质, 2021, 35(4): 1018-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202104011.htm

    Yuan Hao, Liu Jiapeng, Jiang Zaixing. 4D seismic characteristics in coal mine gobs: a case study from the zhangji coal mine in Huainan coalfield[J]. Geoscience, 2021, 35(4): 1018-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202104011.htm
    [9] 薛国强, 宋建平, 闫述, 等. 瞬变电磁探测地下洞体的可行性分析[J]. 石油大学学报: 自然科学版, 2004, 28(5): 135-138. doi: 10.3321/j.issn:1000-5870.2004.05.030

    Xue Guoqiang, Song Jianping, Yan Shu, et al. Feasibility analysis of transient electromagnetic method for detecting underground cave[J]. Journal of the University of Petroleum, China, 2004, 28(5): 135-138. doi: 10.3321/j.issn:1000-5870.2004.05.030
    [10] 杨镜明. 高密度电阻率法煤田采空区勘察效果[J]. 物探与化探, 2012, 36(S1): 12-15.

    Yang Jingming. The application of high density method to the exploration of coalfield goaf[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 12-15.
    [11] 程久龙, 潘冬明, 李伟, 等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报, 2010, 35(2): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201002016.htm

    Cheng Jiulong, Pan Dongming, Li Wei, et al. Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area[J]. Journal of China Coal Society, 2010, 35(2): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201002016.htm
    [12] 薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805056.htm

    Xue Guogiang, Pan Dongming, Yu Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805056.htm
    [13] 贾开国, 吴德明. 工程物探在地下空洞探测中的应用实例分析[J]. 工程勘察, 2006, 34(S1): 278-282.

    Jia Kaiguo, Wu Deming. Application of engineering geophysical survey in underground cavity exploration[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(S1): 278-282.
    [14] 刘云祯, 王振东. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm

    Liu Yunzhen, Wang Zhendong. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm
    [15] 张碧星, 肖柏勋, 杨文杰, 等. 瑞利波勘探中"之"形频散曲线的形成机理及反演研究[J]. 地球物理学报, 2000, 43(4): 557-567. doi: 10.3321/j.issn:0001-5733.2000.04.017

    Zhang Bixing, Xiao Boxun, Yang Wenjie, et al. Mechanism of zigzag dispersion curves in rayleigh exploration and its inversion study[J]Chinese Journal of Geophysics, 2000, 43(4): 557-567. doi: 10.3321/j.issn:0001-5733.2000.04.017
    [16] 张碧星, 鲁来玉, 鲍光淑. 瑞利波勘探中"之"字形频散曲线研究[J]. 地球物理学报, 2002, 45(2): 263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013

    Zhang Bixing, Lu Laiyü, Bao Guangshu. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 2002, 45(2): 263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013
    [17] 常锁亮, 张淑婷, 李贵山, 等. 多道瞬态瑞雷波法在探测煤矿采空区中的应用[J]. 中国煤田地质, 2002, 14(3): 70-72. doi: 10.3969/j.issn.1674-1803.2002.03.030

    Chang Suoliang, Zhang Shuting, Li Guishan, et al. Application of multi-channel transient Rayleigh wave method on survey of goaf in coal mine[J]. Coal Geology of China, 2002, 14(3): 70-72. doi: 10.3969/j.issn.1674-1803.2002.03.030
    [18] Nasseri-Moghaddam A, Cascante G, Hutchinson J. A new quantitative procedure to determine the location and embedment depth of a void using surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(1): 51-64. doi: 10.2113/JEEG10.1.51
    [19] 苏晓强. 瞬态瑞雷波法在地表探测煤矿采空区位置中的应用[J]. 煤, 2005, 14(4): 24-26.

    Su Xiaoqiang. Application of instantaneous Rayleigh wave method in detecting goaf of coal mine surface[J]. Coal, 2005, 14(4): 24-26.
    [20] Xia J H, Nyquist J E, Xu Y X, et al. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction[J]. Journal of Applied Geophysics, 2007, 62(3): 244-253. doi: 10.1016/j.jappgeo.2006.12.002
    [21] 陈昌彦, 白朝旭, 宋连亮, 等. 多道瞬态瑞雷波技术在公路采空塌陷区探测中应用[J]. 地球物理学进展, 2010, 25(2): 701-708. doi: 10.3969/j.issn.1004-2903.2010.02.045

    Chen Changyan, Bai Chaoxü, Song Lianliang, et al. Application of the multichannel transient Rayleigh wave method to highway goaf detection[J]. Progress in Geophysics, 2010, 25(2): 701-708. doi: 10.3969/j.issn.1004-2903.2010.02.045
    [22] Rector J W, Pfeiffe J, Hodges S, et al. Tomographic imaging of surface waves: a case study from the Phoenix Mine, Battle Mountain, Nevada[J]. The Leading Edge, 2015, 34(11): 1360-1364. doi: 10.1190/tle34111360.1
    [23] 夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015.

    Xia Jianghai. High frequency surface wave method[M]. Wuhan: China University of Geosciences Press, 2015.
    [24] Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. GEOPHYSICS, 1999, 64(3): 800-808. doi: 10.1190/1.1444590
    [25] Park C B, Miller R D, Xia J H. Imaging dispersion curves of surface waves on multichannel record[C]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377-1380.
    [26] Rix G J, Leipski E A. Accuracy and resolution of surface wave inversion[C]//Recent Advances in Instrumentation, Data Acquisition & Testing in Soil Dynamics. ASCE, 1991.
    [27] Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. GEOPHYSICS, 1986, 51(4): 889-901. doi: 10.1190/1.1442147
    [28] Virieux J. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Exploration Geophysics, 1984, 15(4): 265.
    [29] 闫英伟. 浅地表高频面波成像技术研究[D]. 长春: 吉林大学, 2019.

    Yan Yingwei. Research on high-frequency surface wave imaging technique for the shallow subsurface[D]. Changchun: Jinlin University, 2019.
    [30] Xia J H, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. GEOPHYSICS, 1999, 64(3): 691-700. doi: 10.1190/1.1444578
  • 加载中
图(9)
计量
  • 文章访问数:  437
  • HTML全文浏览量:  180
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 修回日期:  2021-11-12
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回