留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

道间距和炮间距对陷落柱探测的影响

刘家豪 朱国维

刘家豪, 朱国维. 道间距和炮间距对陷落柱探测的影响[J]. 矿业科学学报, 2021, 6(4): 389-396. doi: 10.19606/j.cnki.jmst.2021.04.003
引用本文: 刘家豪, 朱国维. 道间距和炮间距对陷落柱探测的影响[J]. 矿业科学学报, 2021, 6(4): 389-396. doi: 10.19606/j.cnki.jmst.2021.04.003
Liu Jiahao, Zhu Guowei. The influence of receptor interval and shot interval on the detection of collapse column[J]. Journal of Mining Science and Technology, 2021, 6(4): 389-396. doi: 10.19606/j.cnki.jmst.2021.04.003
Citation: Liu Jiahao, Zhu Guowei. The influence of receptor interval and shot interval on the detection of collapse column[J]. Journal of Mining Science and Technology, 2021, 6(4): 389-396. doi: 10.19606/j.cnki.jmst.2021.04.003

道间距和炮间距对陷落柱探测的影响

doi: 10.19606/j.cnki.jmst.2021.04.003
基金项目: 

国家重点研发计划 2018YFC0807801

详细信息
    作者简介:

    刘家豪(1994—),男,安徽宿州人,硕士研究生,主要从事物探方面的研究工作。Tel:18832015207,E-mail:1439125723@qq.com

  • 中图分类号: TD15

The influence of receptor interval and shot interval on the detection of collapse column

  • 摘要: 本文以陷落柱的地质特征以及陷落柱地震波传播特征为基础构建陷落柱模型,采用声波方程基于单因素变化分别模拟不同的道间距和炮间距对陷落柱探测的影响,利用偏移剖面反射波振幅变化并结合地震属性分析与人工解释进行陷落柱断裂边界解释,以陷落柱横向分辨率的平均偏差为指标来判断探测精度,并对陷落柱直径解释误差采用射线追踪的方法进行了分析。结果表明,小道间距有助于提高陷落柱勘探分辨率,道间距为5 m、炮间距为40 m时,解释得出的陷落柱直径的精度相对较高。
  • 图  1  不同剖面陷落柱地震响应特征

    Figure  1.  Seismic response characteristics of collapse columns in different sections

    图  2  陷落柱模型

    Figure  2.  Collapse column model

    图  3  道间距为5 m陷落柱解释

    Figure  3.  Explanation diagram of collapse column with track spacing of 5 m

    图  4  道间距为10 m陷落柱解释

    Figure  4.  Explanation diagram of collapse column with track spacing of 10 m

    图  5  道间距为15 m陷落柱解释

    Figure  5.  Explanation diagram of collapse column with track spacing of 15 m

    图  6  道间距为20 m陷落柱解释

    Figure  6.  Explanation diagram of collapse column with track spacing of 20 m

    图  7  炮间距为10 m陷落柱解释

    Figure  7.  Explanation diagram of collapse column with shot spacing of 10 m

    图  8  炮间距为20 m陷落柱解释

    Figure  8.  Explanation diagram of collapse column with shot spacing of 20 m

    图  9  炮间距为30 m陷落柱解释

    Figure  9.  Explanation diagram of collapse column with shot spacing of 30 m

    图  10  炮间距为40 m陷落柱解释

    Figure  10.  Explanation diagram of collapse column with shot spacing of 40 m

    图  11  炮间距为50 m陷落柱解释

    Figure  11.  Explanation diagram of collapse column with shot spacing of 50 m

    图  12  不同炮点位置射线特征

    Figure  12.  Ray feature of different shot positions

    表  1  地质背景参数表

    Table  1.   Geological background parameters

    序号 纵波速度/(m·s-1) 横波速度/(m·s-1) 密度/(g·cm-3) 厚度/m 岩性
    1 3 400 1 962 2.26 400 砂岩
    2 2 200 1 270 2.00 10 煤层
    3 3 800 2 194 2.32 390 灰岩
    下载: 导出CSV

    表  2  陷落柱探测精度分析

    Table  2.   Precision analysis of the collapse column

    道间距/m 振幅不大于正常煤层反射波振幅的一半解释陷落柱的边界 振幅变弱点解释陷落柱的边界 属性解释陷落柱边界 平均偏差
    解释直径/m 绝对误差 相对误差 解释直径/m 绝对误差 相对误差 解释直径/m 绝对误差 相对误差
    5 110 10 0.10 120 20 0.20 98 -2 -0.02 10.67
    10 120 20 0.20 120 20 0.20 97 -3 -0.03 14.33
    15 130 30 0.30 135 35 0.35 95 -5 -0.05 23.33
    20 140 40 0.40 140 40 0.40 89 -11 -0.11 30.33
    下载: 导出CSV

    表  3  陷落柱探测精度分析

    Table  3.   Precision analysis of the collapse column

    炮间距/m 振幅不大于正常煤层反射波振幅的一半解释陷落柱的边界 振幅变弱点解释陷落柱的边界 属性解释陷落柱边界 平均偏差
    解释直径/m 绝对误差 相对误差 解释直径/m 绝对误差 相对误差 解释直径/m 绝对误差 相对误差
    10 110 10 0.10 120 20 0.20 94 -6 -0.06 12.00
    20 110 10 0.10 120 20 0.20 98 -2 -0.02 10.67
    30 115 15 0.15 130 30 0.30 110 10 0.10 18.33
    40 100 0 0 115 15 0.15 104 4 0.04 6.33
    50 140 40 0.40 165 65 0.65 120 20 0.20 41.67
    下载: 导出CSV
  • [1] 孟新富, 冯春龙, 查文锋. 最大炮检距对陷落柱探测的影响[J]. 煤矿安全, 2015, 46(3): 194-196, 200. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201503056.htm

    Meng Xinfu, Feng Chunlong, Zha Wenfeng. Influence of maximum offset on collapse column exploration[J]. Safety in Coal Mines, 2015, 46(3): 194-196, 200. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201503056.htm
    [2] 曹志勇, 王伟, 杨德义, 等. 煤田陷落柱波场模拟与分析[J]. 太原理工大学学报, 2008, 39(S2): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY2008S2022.htm

    Cao Zhiyong, Wang Wei, Yang Deyi, et al. Coalfield subsided column wave field modeling and analysis[J]. Journal of Taiyuan University of Technology, 2008, 39(S2): 247-250. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY2008S2022.htm
    [3] 杨晓东, 杨德义. 煤田陷落柱特殊波对陷落柱解释的影响[J]. 物探与化探, 2010, 34(5): 627-631, 634. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201005015.htm

    Yang Xiaodong, Yang Deyi. An analysis of the special wave impact on the interpretation of the coalfield collapse column[J]. Geophysical and Geochemical Exploration, 2010, 34(5): 627-631, 634. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201005015.htm
    [4] 孙庆贵. 岩溶陷落柱对煤矿的影响与处理措施[J]. 科技风, 2008(1): 5. doi: 10.3969/j.issn.1671-7341.2008.01.005

    Sun Qinggui. Effect of karst collapse pillar on coal mine and treatment measures[J]. Technology Wind, 2008(1): 5. doi: 10.3969/j.issn.1671-7341.2008.01.005
    [5] 崔芳鹏, 武强, 林元惠, 等. 中国煤矿水害综合防治技术与方法研究[J]. 矿业科学学报, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141

    Cui Fangpeng, Wu Qiang, Lin Yuanhui, et al. A Study on the technology and methods of comprehensive prevention and control of coal mine water hazards in China[J]. Journal of Mining Sciences and Technology, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141
    [6] 许延春, 曹光明, 张星宇, 等. 推采陷落柱工作面覆岩异常破坏规律研究[J]. 矿业科学学报, 2018, 3(3): 268-276. http://kykxxb.cumtb.edu.cn/article/id/147

    Xu Yanchun, Cao Guangming, Zhang Xingyu, et al. A study on the law of abnormal failure of overrock in sliding column working face of push mining[J]. Journal of Mining Sciences and Technology, 2018, 3(3): 268-276. http://kykxxb.cumtb.edu.cn/article/id/147
    [7] 尹尚先, 连会青, 刘德民, 等. 华北型煤田岩溶陷落柱研究70年: 成因·机理·防治[J]. 煤炭科学技术, 2019, 47(11): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201911001.htm

    Yin Shangxian, Lian Huiqing, Liu Demin, et al. 70 years of investigation on Karst collapse column in North China Coalfield: cause of origin, mechanism and prevention[J]. Coal Science and Technology, 2019, 47(11): 1-29. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201911001.htm
    [8] Martinez J D, Johnson K S, Neal J T. Sinkholes in ev-aporate rocks[J]. American Scientist, 1998, 86: 39-52. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=131763&site=ehost-live
    [9] Palmer A N. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin, 1991, 103(1): 1-21. doi: 10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2
    [10] Van den Eeckhaut M, Poesen J, Dusar M, et al. Sinkhole formation above underground limestone Quarries: a case study in South Limburg (Belgium)[J]. Geomorphology, 2007, 91(1/2): 19-37. http://www.sciencedirect.com/science/article/pii/S0169555X07000463
    [11] Hatzor Y H, Talesnick M, Tsesarsky M. Continuous and discontinuous stability analysis of the bell-shapedcaverns at Bet Guvrin, Israel[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(7): 867-886. doi: 10.1016/S1365-1609(02)00071-0
    [12] Martinez J, Johnson K, Neal J. Sink-holes in evaporite rocks surface subsidence can develop within a matter of days when highly soluble rocks dissolves because of either natural or human cause[J]. Amercan Scientist, 1998: 38-51. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=131763&site=ehost-live
    [13] 赵金贵, 郭敏泰. 平顺老马岭岩溶陷落柱的发现及形成时段探讨[J]. 煤炭学报, 2014, 39(8): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408045.htm

    Zhao Jingui, Guo Mintai. Discover and formation time of Karst collapse pillar in Laomaling, Pingshun County[J]. Journal of China Coal Society, 2014, 39(8): 1716-1724. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408045.htm
    [14] 赵金贵, 郭敏泰. 太原东山大窑头煤系层间构造与岩溶陷落柱群发育模式[J]. 煤炭学报, 2013, 38(11): 1999-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201311020.htm

    Zhao Jingui, Guo Mintai. The interlayer structures and the Karst collapse Pillars style of the coal measure strata in Dayaotou village, Eastern Mountain, Taiyuan[J]. Journal of China Coal Society, 2013, 38(11): 1999-2006. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201311020.htm
    [15] 尹尚先, 武强, 王尚旭. 华北煤矿区岩溶陷落柱特征及成因探讨[J]. 岩石力学与工程学报, 2004, 23(1): 120-123. doi: 10.3321/j.issn:1000-6915.2004.01.023

    Yin Shangxian, Wu Qiang, Wang Shangxu. Studies on characters and forming mechanism of karstic collapse columns at mine area of North China[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 120-123. doi: 10.3321/j.issn:1000-6915.2004.01.023
    [16] 牛磊. 华北型煤田岩溶陷落柱突水机理及危险性评价[D]. 北京: 中国矿业大学(北京), 2015.
    [17] 尹万才, 施龙青, 卜昌森. 华北煤田陷落柱发育的几何特征[J]. 山东科技大学学报: 自然科学版, 2004, 23(2): 23-25. doi: 10.3969/j.issn.1672-3767.2004.02.007

    Yin Wancai, Shi Longqing, Bu Changsen. Geometrical characteristics of sunken column in North China coalfield[J]. Journal of Shandong University of science and Technology: Natural Science, 2004, 23(2): 23-25. doi: 10.3969/j.issn.1672-3767.2004.02.007
    [18] 张永双, 谭卓英, 吕朋菊. 华北型煤田岩溶陷落柱分类探讨[J]. 煤炭工程师, 1998, 25(5): 19-21, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER805.006.htm

    Zhang Yongshuang, Tan Zhuoying, Lü Pengju. Probing into classification of Karst subsided columns in coal basins of North China type[J]. Coal Engineer, 1998, 25(5): 19-21, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER805.006.htm
    [19] 赵金贵. 西山煤田岩溶陷落柱形态学特征及构造水文演化[D]. 太原: 太原理工大学, 2004.
    [20] 洪雷. 大同四台井田岩溶陷落柱发育规律的研究[J]. 矿业安全与环保, 2003, (S1): 217-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER2003S1121.htm

    Hong Lei. Study on development of Karst collapse columns in Sitai Mine field in Datong[J]. Mining Safety & Environmental Protection, 2003, (S1): 217-218. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER2003S1121.htm
    [21] 尹尚先, 吴文金, 李永军. 华北煤田岩溶陷落柱及其突水研究[M]. 北京: 煤炭工业出版社, 2008.
    [22] 许海涛, 李永军, 康庆涛. 陷落柱发育规律及其地球物理特征研究[J]. 中国矿业, 2014, 23(8): 119-122. doi: 10.3969/j.issn.1004-4051.2014.08.027

    Xu Haitao, Li Yongjun, Kang Qingtao. Study on development regularity and geophysical characteristics of collapse column[J]. China Mining Magazine, 2014, 23(8): 119-122. doi: 10.3969/j.issn.1004-4051.2014.08.027
    [23] 申有义. 煤田陷落柱三维地震勘探观测系统的优化设计[D]. 太原: 太原理工大学, 2009.
    [24] 郭文峰. 采空区及陷落柱的地震波场分析[D]. 太原: 太原理工大学, 2015.
    [25] 吴守华, 周国兴, 杨素霞, 等. 陷落柱地震响应特征分析[J]. 煤田地质与勘探, 2004, 32(3): 52-54. doi: 10.3969/j.issn.1001-1986.2004.03.018

    Wu Shouhua, Zhou Guoxing, Yang Suxia, et al. Analysis for the seismic response characteristics of collapse column[J]. Coal Geology & Exploration, 2004, 32(3): 52-54. doi: 10.3969/j.issn.1001-1986.2004.03.018
    [26] 袁野, 刘洋. 地震属性优化与预测新进展[J]. 勘探地球物理进展, 2010, 33(4): 229-238, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201004002.htm

    Yuan Ye, Liu Yang. New progress in seismic attribute optimizing and predicting[J]. Progress in Exploration Geophysics, 2010, 33(4): 229-238, 227. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201004002.htm
    [27] 曹志勇, 杨德义. 陷落柱的高斯射线束法模拟[J]. 中国煤炭地质, 2008, 20(6): 63-65, 69. doi: 10.3969/j.issn.1674-1803.2008.06.022

    Cao Zhiyong, Yang Deyi. Modeling of subsided column with Gaussian beam method[J]. Coal Geology of China, 2008, 20(6): 63-65, 69. doi: 10.3969/j.issn.1674-1803.2008.06.022
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  690
  • HTML全文浏览量:  212
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-18
  • 修回日期:  2020-10-28
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回