Volume 9 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
ZHANG Cun, FANG Shangxin, JIA Sheng, WANG Yongle, WANG Fangtian, BAI Qingsheng. Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010
Citation: ZHANG Cun, FANG Shangxin, JIA Sheng, WANG Yongle, WANG Fangtian, BAI Qingsheng. Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning[J]. Journal of Mining Science and Technology, 2024, 9(3): 413-425. doi: 10.19606/j.cnki.jmst.2024.03.010

Damage evolution characteristics of 3D-reconstructed coal during loading and its size effects based on CT scanning

doi: 10.19606/j.cnki.jmst.2024.03.010
  • Received Date: 2024-01-11
  • Rev Recd Date: 2024-02-24
  • Publish Date: 2024-06-30
  • Coal is a porous material containing pore structures and mineral components, exhibiting pronounced anisotropy and size effects.In order to investigate the influence of coal anisotropy and size effects on its failure characteristics, this paper proposes a simulation method for characterizing and reconstructing three-dimensionally the internal pores and mineral components of coal samples based on CT scanning, nuclear magnetic resonance, and X-ray diffraction.Specifically, we obtained simulation parameters of three-dimensional reconstruction models of coal matrix and mineral components through inverse laboratory uniaxial compression experiments, while simulated and analyzed the strength damage characteristics of coal bodies with different aspect ratios.The simulation results show that: ① During the loading process, the plastic zone first gradually expands and connects outward around the pores and mineral components.In terms of spatial distribution, the plastic zone expands vertically from the loading end to the interior in the early stage, and in the later stage, it expands horizontally from the surroundings to the interior.After the model is damaged, a "double truncated cone structure" is formed in the non-plastic zone.② The increase of aspect ratio leads to an increase in the compressive strength(p) of coal samples, the strain(ζ) at yielding strength, and the elastic modulus(K), among which ζ and K increase linearly, while the margin of increase in p gradually decreases.③ The total energy and elastic energy of coal sample loading increase exponentially, while the dissipated energy increases linearly.The increase of aspect ratio leads to an increase both in the accumulated elastic energy in the coal body and in the released energy during failure, which easily induce dynamic impact-related disasters.This study provide references for the reasonable selection of coal pillar size in impact mine pressure area.

  • loading
  • [1]
    SONG H, JIANG Y, ELSWORTH D, et al. Scale effects and strength anisotropy in coal[J]. International Journal of Coal Geology, 2018, 195: 37-46. doi: 10.1016/j.coal.2018.05.006
    [2]
    刘彦飞, 汤达祯, 许浩, 等. 基于核磁共振的煤岩孔裂隙应力变形特征[J]. 煤炭学报, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm

    LIU Yanfei, TANG Dazhen, XU Hao, et al. Characteristics of the stress deformation of pore-fracture in coal based on nuclear magnetic resonance[J]. Journal of China Coal Society, 2015, 40(6): 1415-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201506030.htm
    [3]
    宫伟力, 李晨. 煤岩结构多尺度各向异性特征的SEM图像分析[J]. 岩石力学与工程学报, 2010, 29(S1): 2681-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1018.htm

    GONG Weili, LI Chen. SEM image analysis of multi-scale anisotropy characteristics of coal and rock structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 2681-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1018.htm
    [4]
    龚爽, 赵毅鑫, 王震, 等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报, 2021, 46(8): 2574-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108018.htm

    GONG Shuang, ZHAO Yixin, WANG Zhen, et al. Effect of bedding on the fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society, 2021, 46(8): 2574-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202108018.htm
    [5]
    张剑, 康红普, 刘爱卿, 等. 山西西山矿区井下地应力场分布规律[J]. 煤炭学报, 2020, 45(12): 4006-4016. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202012005.htm

    ZHANG Jian, KANG Hongpu, LIU Aiqing, et al. Distribution law of underground in situ stress field in Xishan coal mine field, Shanxi Province[J]. Journal of China Coal Society, 2020, 45(12): 4006-4016. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202012005.htm
    [6]
    王琦, 何满潮, 王允偲, 等. 切顶卸压无煤柱自成巷研究进展与展望[J]. 采矿与安全工程学报, 2023, 40(3): 429-447. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202303001.htm

    WANG Qi, HE Manchao, WANG Yuncai, et al. Research progress and prospect of automatically formed roadway by roof cutting and pressure relief without Pillars[J]. Journal of Mining & Safety Engineering, 2023, 40(3): 429-447. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202303001.htm
    [7]
    王猛, 李志学, 夏恩乐, 等. 深部巷道围岩能量耗散与支护调控效应[J]. 采矿与安全工程学报, 2022, 39(4): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204011.htm

    WANG Meng, LI Zhixue, XIA Enle, et al. Energy dissipation and supporting regulation effect of surrounding rock in deep roadway[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 741-749. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204011.htm
    [8]
    白永健, 葛华, 冯文凯, 等. 乌蒙山区红层软岩滑坡地质演化及灾变过程离心机模型试验研究[J]. 岩石力学与工程学报, 2019, 38(S1): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1043.htm

    BAI Yongjian, GE Hua, FENG Wenkai, et al. Centrifuge model test study on geological evolution and disaster process of red bed soft rock landslide in Wumeng Mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1043.htm
    [9]
    卢方超, 高建良, 张玉贵, 等. 单轴加载煤孔、裂隙各向异性声波特征[J]. 地球物理学进展, 2018, 33(6): 2555-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806048.htm

    LU Fangchao, GAO Jianliang, ZHANG Yugui, et al. Anisotropic ultrasonic characteristics of coal pores and fractures under uniaxial loading[J]. Progress in Geophysics, 2018, 33(6): 2555-2562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201806048.htm
    [10]
    卢方超, 张玉贵, 江林华. 单轴加载煤孔裂隙各向异性核磁共振特征[J]. 煤田地质与勘探, 2018, 46(1): 66-72. doi: 10.3969/j.issn.1001-1986.2018.01.012

    LU Fangchao, ZHANG Yugui, JIANG Linhua. Anisotropic characteristics of nuclear magnetic resonance of pores and fractures in coal under uniaxial loading[J]. Coal Geology & Exploration, 2018, 46(1): 66-72. doi: 10.3969/j.issn.1001-1986.2018.01.012
    [11]
    王小琼, 葛洪魁, 王文文, 等. 致密储层岩石应力各向异性与材料各向异性的实验研究[J]. 地球物理学报, 2021, 64(12): 4239-4251. doi: 10.6038/cjg2021P0040

    WANG Xiaoqiong, GE Hongkui, WANG Wenwen, et al. Experimental study on stress-related and matrix-related anisotropy in tight reservoirs[J]. Chinese Journal of Geophysics, 2021, 64(12): 4239-4251. doi: 10.6038/cjg2021P0040
    [12]
    温晓贵, 张勋, 周建, 等. 考虑各向异性的原状软黏土微观结构变化机制研究[J]. 岩土力学, 2011, 32(1): 27-32, 38. doi: 10.3969/j.issn.1000-7598.2011.01.005

    WEN Xiaogui, ZHANG Xun, ZHOU Jian, et al. Changing mechanism of microstructure of intact soft clay considering anisotropy[J]. Rock and Soil Mechanics, 2011, 32(1): 27-32, 38. doi: 10.3969/j.issn.1000-7598.2011.01.005
    [13]
    赵怡晴, 吴常贵, 金爱兵, 等. 热处理砂岩微观结构及力学性质试验研究[J]. 岩土力学, 2020, 41(7): 2233-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007010.htm

    ZHAO Yiqing, WU Changgui, JIN Aibing, et al. Experimental study of sandstone microstructure and mechanical properties under high temperature[J]. Rock and Soil Mechanics, 2020, 41(7): 2233-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007010.htm
    [14]
    吕兆兴, 冯增朝, 赵阳升. 岩石的非均质性对其材料强度尺寸效应的影响[J]. 煤炭学报, 2007, 32(9): 917-920. doi: 10.3321/j.issn:0253-9993.2007.09.005

    LÜ Zhaoxing, FENG Zengchao, ZHAO Yangsheng. Influence of rock inhomogeneity on strength-size effect of rock materials[J]. Journal of China Coal Society, 2007, 32(9): 917-920. doi: 10.3321/j.issn:0253-9993.2007.09.005
    [15]
    吴兴杰, 靖洪文, 苏海健, 等. 煤系地层砂岩抗拉强度及其矿物粒径效应[J]. 煤矿安全, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm

    WU Xingjie, JING Hongwen, SU Haijian, et al. Tensile strength of coal measures sandstone and its mineral particle size effect[J]. Safety in Coal Mines, 2016, 47(7): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201607013.htm
    [16]
    崔智丽, 宫能平, 经来旺. 岩石非理想裂纹圆盘试件动态断裂韧性测试的有限元分析及试验研究[J]. 岩土力学, 2015, 36(3): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503015.htm

    CUI Zhili, GONG Nengping, JING Laiwang. Experiment and finite element analysis of rock dynamic fracture toughness test on nonideal crack disc specimens[J]. Rock and Soil Mechanics, 2015, 36(3): 694-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503015.htm
    [17]
    彭相愿, 高富强, 原贵阳, 等. 煤应变型冲击破坏尺寸效应声发射特征试验研究[J]. 采矿与岩层控制工程学报, 2023, 5(3): 64-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202303007.htm

    PENG Xiangyuan, GAO Fuqiang, YUAN Guiyang, et al. Experimental study on the size effect of acoustic emission characteristics of coal strainbursts[J]. Journal of Mining and Strata Control Engineering, 2023, 5(3): 64-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202303007.htm
    [18]
    钱建固, 林志强. 双孔隙结构重塑非饱和膨胀土的抗剪强度特性[J]. 岩土工程学报, 2023, 45(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202303005.htm

    QIAN Jiangu, LIN Zhiqiang. Shear strength behaviors of unsaturated expansive soils with dual-porosity structure[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 486-494. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202303005.htm
    [19]
    金爱兵, 巨有, 孙浩, 等. 相变储能充填体孔隙结构及强度劣化机制研究[J]. 岩土力学, 2021, 42(10): 2623-2633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110001.htm

    JIN Aibing, JU You, SUN Hao, et al. Pore structure and strength deterioration mechanism of phase change energy storage backfill[J]. Rock and Soil Mechanics, 2021, 42(10): 2623-2633. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110001.htm
    [20]
    王相龙, 潘结南, 王凯, 等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报, 2023, 48(3): 1325-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202303018.htm

    WANG Xianglong, PAN Jienan, WANG Kai, et al. Characteristics of micro-CT scale pore-fracture of tectonic ally deformed coal and their controlling effect on permeability[J]. Journal of China Coal Society, 2023, 48(3): 1325-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202303018.htm
    [21]
    陈建, 程卫民, 郭立稳, 等. 基于CT和超声波技术联合分析的注水煤岩监测参数规律研究[J]. 采矿与安全工程学报, 2022, 39(4): 786-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204016.htm

    CHEN Jian, CHENG Weimin, GUO Liwen, et al. Law of monitoring parameters of water injection coal based on the combined analysis of CT and ultrasonic technology[J]. Journal of Mining & Safety Engineering, 2022, 39(4): 786-796. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL202204016.htm
    [22]
    LUO X, ZHANG Y, ZHOU H, et al. Pore structure characterization and seepage analysis of ionic rare earth orebodies based on computed tomography images[J]. International Journal of Mining Science and Technology, 2022, 32(2): 411-421. doi: 10.1016/j.ijmst.2022.02.006
    [23]
    毛彦军, 陈曦, 范超男, 等. 基于CT三维重建的注水煤岩体裂隙扩展规律研究[J]. 岩土力学, 2022, 43(6): 1717-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206024.htm

    MAO Yanjun, CHEN Xi, FAN Chaonan, et al. Crack network evolution of water injection coal and rock mass by means of 3D reconstruction[J]. Rock and Soil Mechanics, 2022, 43(6): 1717-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202206024.htm
    [24]
    SONG R, ZHENG L, WANG Y, et al. Effects of pore structure on sandstone mechanical properties based on micro-ct reconstruction model[J]. Advances in Civil Engineering, 2020, 2020(1): 1-21.
    [25]
    WANG G, QIN X J, HAN D Y, et al. Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures[J]. International Journal of Mining Science and Technology, 2021, 31(2): 175-185. doi: 10.1016/j.ijmst.2020.11.003
    [26]
    ZHAO Y X, SONG H, LIU S, et al. Mechanical anisotropy of coal with considerations of realistic microstructures and external loading directions[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 116: 111-121. doi: 10.1016/j.ijrmms.2019.03.005
    [27]
    ZHAO Y X, LIU S, ZHAO G F, et al. Failure mechanisms in coal: dependence on strain rate and microstructure[J]. Journal of Geophysical Research Solid Earth, 2015, 119(9): 6924-6935.
    [28]
    王桂华, 程远方, 梁何生. 岩屑显微硬度法确定地层力学参数[J]. 石油钻探技术, 2003, 31(3): 7-9. doi: 10.3969/j.issn.1001-0890.2003.03.003

    WANG Guihua, CHENG Yuanfang, LIANG Hesheng. A new method to determine the formation mechanical properties with cuttings microhardness[J]. Petroleum Drilling Techniques, 2003, 31(3): 7-9. doi: 10.3969/j.issn.1001-0890.2003.03.003
    [29]
    高富强, 原贵阳, 娄金福, 等. 基于局部矿井刚度理论的冲击地压试验装置研制及应用[J]. 煤炭学报, 2023, 48(5): 1985-1995. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202305012.htm

    GAO Fuqiang, YUAN Guiyang, LOU Jinfu, et al. Development and application of coal burst experiment system based on local mine stiffness theory[J]. Journal of China Coal Society, 2023, 48(5): 1985-1995. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202305012.htm
    [30]
    WANG S, XU Y, ZHANG Y B, et al. Effects of sandstone mineral composition heterogeneity on crack initiation and propagation through a microscopic analysis technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 162: 105307. doi: 10.1016/j.ijrmms.2022.105307
    [31]
    伍法权, 乔磊, 管圣功, 等. 小尺寸岩样单轴压缩试验尺寸效应研究[J]. 岩石力学与工程学报, 2021, 40(5): 865-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105001.htm

    WU Faquan, QIAO Lei, GUAN Shenggong, et al. Uniaxial compression test study on size effect of small size rock samples[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 865-873. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202105001.htm
    [32]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
    [33]
    谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    XIE Heping, PENG Ruidong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565-3570. doi: 10.3321/j.issn:1000-6915.2004.21.001
    [34]
    张志镇, 高峰. 单轴压缩下岩石能量演化的非线性特性研究[J]. 岩石力学与工程学报, 2012, 31(6): 1198-1207. doi: 10.3969/j.issn.1000-6915.2012.06.015

    ZHANG Zhizhen, GAO Feng. Research on nonlinear characteristics of rock energy evolution under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1198-1207. doi: 10.3969/j.issn.1000-6915.2012.06.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (94) PDF downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return