Volume 9 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YANG Guoliang, SHANG Zhuo, ZOU Zehua, BI Jingjiu, DONG Zhiwen. Study on dynamic splitting and evolution mechanism of sandstone under freeze-thaw cycle[J]. Journal of Mining Science and Technology, 2024, 9(2): 199-208. doi: 10.19606/j.cnki.jmst.2024.02.007
Citation: YANG Guoliang, SHANG Zhuo, ZOU Zehua, BI Jingjiu, DONG Zhiwen. Study on dynamic splitting and evolution mechanism of sandstone under freeze-thaw cycle[J]. Journal of Mining Science and Technology, 2024, 9(2): 199-208. doi: 10.19606/j.cnki.jmst.2024.02.007

Study on dynamic splitting and evolution mechanism of sandstone under freeze-thaw cycle

doi: 10.19606/j.cnki.jmst.2024.02.007
  • Received Date: 2023-09-21
  • Rev Recd Date: 2023-12-14
  • Publish Date: 2024-04-30
  • This study attempts to investigate the dynamic tensile mechanical properties of sandstone under freeze-thaw cycle by using the split Hopkinson pressure bar (SHPB)test system to perform dynamic splitting tests on sandstone samples with freeze-thaw cycle 0, 10, 20 and 40 times at different impact speeds.Also adopting the high-speed digital image correlation (DIC), we observed the dynamic tensile failure process of the specimen, where we analyzed the strength characteristics, deformation process and failure form of frozen sandstone under dynamic tensile stress in different freeze-thaw cycles.Results show that 1)the dynamic tensile σ-t curves of frozen sandstone and ordinary sandstone exhibit similar patterns of stress variation under different freeze-thaw cycles, which can be divided into four stages: low speed growth section, high speed growth section, peak plateau section and decreasing section; 2)the peak tensile stress increases linearly with the increase of stress loading rate; 3)the peak tensile stress of frozen rock has a certain freeze-thaw cycle effect, and there is a strong correlation between the peak tensile stress and the number of freeze-thaw cycles.The dynamic tensile strength of frozen rock increases first and then decreases as the number of freeze-thaw cycles increases.Under the same impact pressure, the frozen rock specimen shows certain freeze-thaw cycle effect as the tensile strain at the center shows N=40>20>0>10 under 4 kinds of freeze-thaw cycles.
  • loading
  • [1]
    吴琪, 陈从喜. 我国矿产资源开发与区域经济发展的关系研究[J]. 中国矿业, 2015, 24(10): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201510010.htm

    WU Qi, CHEN Congxi. Research into the relationship between domestic mineral resources exploitation and regional economic development[J]. China Mining Magazine, 2015, 24(10): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201510010.htm
    [2]
    薛亚洲. 西部地区非能源矿产开发效用及面临的主要问题[J]. 中国经贸导刊, 2009(11): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJMD200911015.htm

    XUE Yazhou. The utility of non-energy mineral development in Western China and the main problems it faces[J]. China Economic & Trade Herald, 2009(11): 30-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJMD200911015.htm
    [3]
    孔祥智, 胡迎春. 西部地区矿业发展的现状及对策[J]. 中国地质大学学报: 社会科学版, 2003, 3(6): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXS200306002.htm

    KONG Xiangzhi, HU Yingchun. Advantages, emphases and countermeasures on the development of mineral resources in China's western region[J]. Journal of China University of Geosciences: Social Sciences Edition, 2003, 3(6): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-DDXS200306002.htm
    [4]
    陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008, 32(3): 432-443. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803001.htm

    CHEN Bo, LI Jianping. Characteristics of spatial and temporal variation of seasonal and short-term frozen soil in China in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(3): 432-443. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803001.htm
    [5]
    陈伟. 资源和环境约束对我国高耗能产业转移的影响研究[D]. 昆明: 云南大学, 2018.

    CHEN Wei. Study on the influence of resources constraints and environmental constraints on the transfer of the energy-intensive industry in China[D]. Kunming: Yunnan University, 2018.
    [6]
    李海婷. 环境规制对矿业产业结构的调整效应研究[D]. 北京: 中国地质大学(北京), 2021.

    LI Haiting. Study on the effect of environmental regulation on the structural adjustment of mining industry[D]. Beijing: China University of Geosciences, 2021.
    [7]
    徐文彬, 王家臣, 栾茂旭. 冻融循环下排土场散体物料力学特性及其稳定性分析[J]. 矿业科学学报, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002

    XU Wenbin, WANG Jiachen, LUAN Maoxu. The effect of freezing and thawing cycles on the mechanical properties and slope stability of the waste dump[J]. Journal of Mining Science and Technology, 2022, 7(2): 154-165. doi: 10.19606/j.cnki.jmst.2022.02.002
    [8]
    罗怀廷. 露天矿土质边坡冻融强度测试及稳定性研究[J]. 煤炭科学技术, 2017, 45(S1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2017S1006.htm

    LUO Huaiting. Strength testing and stability research on soil slope with freezing and thawing in surface mine[J]. Coal Science and Technology, 2017, 45(S1): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ2017S1006.htm
    [9]
    周有禄, 武小鹏, 李奋, 等. 冻融循环作用下重塑黄土强度劣化试验研究[J]. 铁道建筑, 2018, 58(10): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201810019.htm

    ZHOU Youlu, WU Xiaopeng, LI Fen, et al. Experimental study on strength deterioration of remolded loess under freeze-thaw cycles[J]. Railway Engineering, 2018, 58(10): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201810019.htm
    [10]
    卜建清, 王天亮. 冻融及细粒含量对粗粒土力学性质影响的试验研究[J]. 岩土工程学报, 2015, 37(4): 608-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504006.htm

    BU Jianqing, WANG Tianliang. Influences of freeze-thaw and fines content on mechanical properties of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 608-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504006.htm
    [11]
    武宇, 刘殿书, 吴帅峰, 等. 砂岩冲击损伤与应力波参数关系试验研究[J]. 矿业科学学报, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142

    WU Yu, LIU Dianshu, WU Shuaifeng, et al. Experimental study on relationship between impact damage of sandstone and stress wave parameters[J]. Journal of Mining Science and Technology, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142
    [12]
    李胜林, 凌天龙, 张会歌, 等. 早龄期混凝土动态力学性能实验研究[J]. 矿业科学学报, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004

    LI Shenglin, LING Tianlong, ZHANG Huige, et al. Experimental research on dynamic mechanics of early age concrete[J]. Journal of Mining Science and Technology, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004
    [13]
    李德建, 祁浩, 李春晓, 等. 含层理面煤试样的巴西圆盘劈裂实验及数值模拟研究[J]. 矿业科学学报, 2020, 5(2): 150-159. http://kykxxb.cumtb.edu.cn/article/id/275

    LI Dejian, QI Hao, LI Chunxiao, et al. Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes[J]. Journal of Mining Science and Technology, 2020, 5(2): 150-159. http://kykxxb.cumtb.edu.cn/article/id/275
    [14]
    马芹永. 人工冻土动态力学特性研究现状及意义[J]. 岩土力学, 2009, 30(S1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm

    MA Qinyong. Research status of dynamic properties of artificial frozen soil and its significance[J]. Rock and Soil Mechanics, 2009, 30(S1): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S1002.htm
    [15]
    韩东波, 赵光明, 孟祥瑞, 等. 高应变率下砂岩的动态力学性能研究[J]. 爆破, 2014, 31(2): 8-13, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201402002.htm

    HAN Dongbo, ZHAO Guangming, MENG Xiangrui, et al. Study on dynamic mechanical properties of sandstone under high strain rate[J]. Blasting, 2014, 31(2): 8-13, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO201402002.htm
    [16]
    杨仁树, 陈骏, 刘殿书. 动态巴西圆盘劈裂试验的极限分析解[J]. 岩土工程学报, 2017, 39(6): 1156-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706029.htm

    YANG Renshu, CHEN Jun, LIU Dianshu. Limit analysis solution of dynamic Brazilian tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1156-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201706029.htm
    [17]
    文晓泽, 冯国瑞, 郭军, 等. 中低应变率扰动荷载作用下砂岩动态拉伸力学响应特征研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2812-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1019.htm

    WEN Xiaoze, FENG Guorui, GUO Jun, et al. Dynamic tensile mechanical response properties of sandstone under medium and low strain rate disturbance load[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2812-2822. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2022S1019.htm
    [18]
    常海明, 赵东, 蔡婷婷, 等. 含水率对深部岩石抗拉强度影响的规律与机制[J]. 矿业研究与开发, 2022, 42(2): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202202018.htm

    CHANG Haiming, ZHAO Dong, CAI Tingting, et al. Influence law and mechanism of water content on the tensile strength of deep rock[J]. Mining Research and Development, 2022, 42(2): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202202018.htm
    [19]
    夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(3): 448-475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm

    XIA Kaiwen, WANG Shuai, XU Ying, et al. Advances in experimental studies for deep rock dynamics[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 448-475. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202103002.htm
    [20]
    邓正定, 向帅, 周尖荣, 等. 非贯通裂隙岩体损伤演化率相关性及变形特征[J]. 爆炸与冲击, 2019, 39(8): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908010.htm

    DENG Zhengding, XIANG Shuai, ZHOU Jianrong, et al. Rate correlation and deformation of damage evolution of non-penetrating fractured rock masses[J]. Explosion and Shock Waves, 2019, 39(8): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201908010.htm
    [21]
    梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(9): 1830-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209011.htm

    LIANG Changyu, LI Xiao, WANG Shengxing, et al. Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830-1838. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201209011.htm
    [22]
    方士正. 负温环境下弱胶结红砂岩动态力学性质试验研究[D]. 北京: 中国矿业大学(北京), 2020.

    FANG Shizheng. Experimental study on the dynamic mechanical properties of weakly cemented red sandstone under sub-zero temperature[D]. Beijing: China University of Mining & Technology, Beijing, 2020.
    [23]
    常森, 许金余, 郑广辉. 冻融循环层理砂岩冲击荷载下应变率特性研究[J]. 地下空间与工程学报, 2021, 17(1): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101006.htm

    CHANG Sen, XU Jinyu, ZHENG Guanghui. Study on strain rate characteristics of frozen-thawed bedding sandstone under impact load[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(1): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202101006.htm
    [24]
    何岩. 聚丙烯纤维改良粉煤灰土动、静力学参数特性研究[D]. 长春: 吉林大学, 2010.

    HE Yan. Dynamic and static mechanical properties study on polypropylene fiber improving fly ash soil[D]. Changchun: Jilin University, 2010.
    [25]
    王大雁, 马巍, 常小晓, 等. 冻融循环作用对青藏粘土物理力学性质的影响[J]. 岩石力学与工程学报, 2005, 24(23): 4313-4319. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200523020.htm

    WANG Dayan, MA Wei, CHANG Xiaoxiao, et al. Physico-mechanical properties changes of qinghai—tibet clay due to cyclic freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313-4319. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200523020.htm
    [26]
    CHEN L, HAN D, BAI S L, et al. Mechanical behavior of a PBX substitute material under static and dynamic loading[J]. Journal of Testing and Evaluation, 2019, 47(2): 20170300.
    [27]
    WILLIAMSON D M, SIVIOUR C R, PROUD W G, et al. Temperature-time response of a polymer bonded explosive in compression (EDC37)[J]. Journal of Physics D: Applied Physics, 2008, 41(8): 085404. doi: 10.1088/0022-3727/41/8/085404
    [28]
    POISSANT J, BARTHELAT F. A novel "subset splitting" procedure for digital image correlation on discontinuous displacement fields[J]. Experimental Mechanics, 2010, 50(3): 353-364. doi: 10.1007/s11340-009-9220-2
    [29]
    PETERS W H, RANSON W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
    [30]
    PETERS W H, RANSON W F, SUTTON M A, et al. Application of digital correlation methods to rigid body mechanics[J]. Optical Engineering, 1983, 22(6): 738-742.
    [31]
    YAMAGUCHI I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14(11): 1270-1273. doi: 10.1088/0022-3735/14/11/012
    [32]
    潘兵, 吴大方, 高镇同, 等. 1 200 ℃高温热环境下全场变形的非接触光学测量方法研究[J]. 强度与环境, 2011, 38(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201101009.htm

    PAN Bing, WU Dafang, GAO Zhentong, et al. Study of non-contact optical metrology for full-field deformation measurement at 1 200 ℃[J]. Structure & Environ-ment Engineering, 2011, 38(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201101009.htm
    [33]
    PAN B, XIE H M, WANG Z Y. Equivalence of digital image correlation criteria for pattern matching[J]. Applied Optics, 2010, 49(28): 5501-5509. doi: 10.1364/AO.49.005501
    [34]
    马永尚, 陈卫忠, 杨典森, 等. 基于三维数字图像相关技术的脆性岩石破坏试验研究[J]. 岩土力学, 2017, 38(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701016.htm

    MA Yongshang, CHEN Weizhong, YANG Diansen, et al. Experimental study of brittle rock failure based on three-dimensional digital image correlation technique[J]. Rock and Soil Mechanics, 2017, 38(1): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701016.htm
    [35]
    杨仁树, 李炜煜, 李永亮, 等. 3种岩石动态拉伸力学性能试验与对比分析[J]. 煤炭学报, 2020, 45(9): 3107-3118. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009008.htm

    YANG Renshu, LI Weiyu, LI Yongliang, et al. Comparative analysis on dynamic tensile mechanical properties of three kinds of rocks[J]. Journal of China Coal Society, 2020, 45(9): 3107-3118. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202009008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (64) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return