Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Xie Beijing, Luan Zheng, Chen Dongxin, Zhong Shiqing. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
Citation: Xie Beijing, Luan Zheng, Chen Dongxin, Zhong Shiqing. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006

Dynamic characteristics and constitutive model of coal samples with different length diameter ratio

doi: 10.19606/j.cnki.jmst.2023.02.006
  • Received Date: 2022-05-31
  • Rev Recd Date: 2022-09-09
  • Publish Date: 2023-03-30
  • In order to study the dynamic performance of coal samples with different length diameter ratio under impact load, this paper used an improved Hopkinson compression bar experimental device (ϕ75 mm), and carried out the impact compression experiments under 6 impact grades (4.18~8.03 m/s)and 4 aspect ratios(0.33~1.33).It analyzed the correlation between the dynamic parameters and the aspect ratio in combination with the gray correlation theory, and this study then established a 4-parameter uniaxial strength type statistical damage model of coal and rock based on the mechanical mechanism, Weibull distribution and D-P failure criterion.Results show that: ① The length diameter ratio of coal samples has a quadratic function relationship with the strain rate and dynamic compressive strength; The relationship between the dissipation energy and the aspect ratio is a quadratic function, and the dissipation energy decreases with the increase of the aspect ratio; The relationship between the electromagnetic energy and the aspect ratio is a linear function and keeps a positive correlation. ② According to the grey correlation theory, this study obtained the influence order of length diameter ratio of coal sample on dynamic parameters: electromagnetic energy(0.88)>dynamic compressive strength(0.84)>dissipation energy(0.81)>strain rate(0.78).③ The initial constitutive model is constructed based on Weibull distribution and D-P criterion, and the dynamic compressive strength σmax and strain rate、the relationship between length to diameter ratio n was corrected, and then the experimental stress-strain curves were compared to verify the reliability of the model(R2>0.91).
  • loading
  • [1]
    王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J]. 煤炭学报, 2022, 47(1): 297-322. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201021.htm

    Wang Enyuan, Zhang Guorui, Zhang Chaolin, et al. Research progress and prospect on theory and technology for coal and gas outburst control and protection in China[J]. Journal of China Coal Society, 2022, 47(1): 297-322. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202201021.htm
    [2]
    谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm

    Xie Heping. Research review of the state key research development program of China: deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201905002.htm
    [3]
    何学秋, 窦林名, 牟宗龙, 等. 煤岩冲击动力灾害连续监测预警理论与技术[J]. 煤炭学报, 2014, 39(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm

    He Xueqiu, Dou Linming, Mu Zonglong, et al. Continuous monitoring and warning theory and technology of rock burst dynamic disaster of coal[J]. Journal of China Coal Society, 2014, 39(8): 1485-1491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408016.htm
    [4]
    洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 长沙: 中南大学, 2008.
    [5]
    洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012

    Hong Liang, Li Xibing, Ma Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012
    [6]
    孙卓越, 吴拥政, 孙久政, 等. 三维动静加载下煤样动态变形模量长径比效应[J]. 采矿与岩层控制工程学报, 2022, 4(4): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202204005.htm

    Sun Zhuoyue, Wu Yongzheng, Sun Jiuzheng, et al. Length-to-diameter ratio effect of dynamic deformation modulus of coal samples under three-dimensional dynamic and static loading[J]. Journal of Mining and Strata Control Engineering, 2022, 4(4): 67-77. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC202204005.htm
    [7]
    吴拥政, 孙卓越, 付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报, 2022, 41(5): 877-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205002.htm

    Wu Yongzheng, Sun Zhuoyue, Fu Yukai. Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 877-888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205002.htm
    [8]
    王磊, 袁秋鹏, 谢广祥, 等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报, 2022, 47(4): 1534-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204011.htm

    Wang Lei, Yuan Qiupeng, Xie Guangxiang, et al. Length-diameter ratio effect of energy dissipation and fractals of coal samples under impact loading[J]. Journal of China Coal Society, 2022, 47(4): 1534-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202204011.htm
    [9]
    李地元, 肖鹏, 谢涛, 等. 动静态压缩下岩石试样的长径比效应研究[J]. 实验力学, 2018, 33(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201801013.htm

    Li Diyuan, Xiao Peng, Xie Tao, et al. On the effect of length to diameter ratio of rock specimen subjected to dynamic and static compression[J]. Journal of Experimental Mechanics, 2018, 33(1): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201801013.htm
    [10]
    王登科, 刘淑敏, 魏建平, 等. 冲击破坏条件下煤的强度型统计损伤本构模型与分析[J]. 煤炭学报, 2016, 41(12): 3024-3031. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612013.htm

    Wang Dengke, Liu Shumin, Wei Jianping, et al. Analysis and strength statistical damage constitutive model of coal under impacting failure[J]. Journal of China Coal Society, 2016, 41(12): 3024-3031. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201612013.htm
    [11]
    曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19): 3226-3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419003.htm

    Cao Wengui, Zhao Minghua, Liu Chengxue. Study on the model and its modifying method for rock softening and damage based on weibull random distribution[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3226-3231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200419003.htm
    [12]
    郑钰, 施浩然, 刘晓辉, 等. 不同应变率下煤岩破坏特征及其本构模型[J]. 爆炸与冲击, 2021, 41(5): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202105005.htm

    Zheng Yu, Shi Haoran, Liu Xiaohui, et al. Failure characteristics and constitutive model of coal rock at different strain rates[J]. Explosion and Shock Waves, 2021, 41(5): 45-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202105005.htm
    [13]
    中国岩石力学与工程学会. T/CSRME 001—2019岩石动力特性试验规程[S]. 北京: 中国标准出版社, 2019.
    [14]
    孟庆山, 范超, 曾卫星, 等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm

    Meng Qingshan, Fan Chao, Zeng Weixing, et al. Tests on dynamic properties of coral-reef limestone in South China Sea[J]. Rock and Soil Mechanics, 2019, 40(1): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901016.htm
    [15]
    李胜林, 凌天龙, 张会歌, 等. 早龄期混凝土动态力学性能实验研究[J]. 矿业科学学报, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004

    Li Shenglin, Ling Tianlong, Zhang Huige, et al. Experimental research on dynamic mechanics of early age concrete[J]. Journal of Mining Science and Technology, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004
    [16]
    杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    Yang Guoliang, Bi Jingjiu, Zhang Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [17]
    解北京, 严正. 基于层叠模型组合煤岩体动态力学本构模型[J]. 煤炭学报, 2019, 44(2): 463-472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902014.htm

    Xie Beijing, Yan Zheng. Dynamic mechanical constitutive model of combined coal-rock mass based on overlay model[J]. Journal of China Coal Society, 2019, 44(2): 463-472. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201902014.htm
    [18]
    解北京. 煤冲击破坏动力学特性及磁场变化特征实验研究[D]. 北京: 中国矿业大学(北京), 2013.
    [19]
    解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721018.htm

    Xie Beijing, Wang Xinyan, Lü Pingyang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of Vibration and Shock, 2017, 36(21): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201721018.htm
    [20]
    熊仲明, 吕世鸿, 李运良, 等. 被动围压下黄土动态力学性能与能量耗散研究[J]. 岩土力学, 2021, 42(3): 775-782, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103020.htm

    Xiong Zhongming, Lü Shihong, Li Yunliang, et al. Research on dynamic properties and energy dissipation of loess under passive confining pressure conditions[J]. Rock and Soil Mechanics, 2021, 42(3): 775-782, 789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103020.htm
    [21]
    刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M]. 5版. 北京: 科学出版社, 2010.
    [22]
    李毅. 不同围压下高强混凝土压缩过程中能量演化规律及本构模型研究[D]. 淮南: 安徽理工大学, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(9)

    Article Metrics

    Article views (325) PDF downloads(39) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return