Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Xu Jinhui, Shao Longyi, Hou Haihai, Li Jinjuan, Liu Junxia, Huang Man, Wang Xiuying, Lu Jing. Review of environmental impact of comprehensive utilization of phosphogypsum[J]. Journal of Mining Science and Technology, 2023, 8(1): 115-126. doi: 10.19606/j.cnki.jmst.2023.01.011
Citation: Xu Jinhui, Shao Longyi, Hou Haihai, Li Jinjuan, Liu Junxia, Huang Man, Wang Xiuying, Lu Jing. Review of environmental impact of comprehensive utilization of phosphogypsum[J]. Journal of Mining Science and Technology, 2023, 8(1): 115-126. doi: 10.19606/j.cnki.jmst.2023.01.011

Review of environmental impact of comprehensive utilization of phosphogypsum

doi: 10.19606/j.cnki.jmst.2023.01.011
  • Received Date: 2022-05-18
  • Rev Recd Date: 2022-06-11
  • Publish Date: 2023-02-28
  • Phosphogypsum is a kind of industrial solid waste produced by wet phosphoric acid. Although there is an increase in the utilization rate of phosphogypsum, its consumption is limited. At present, it is still treated through accumulation, which will not only occupy land resources, but also causes serious environmental pollution. This paper reviews the discharge and comprehensive utilization of phosphogypsum in China, and analyzes the environmental impact of phosphogypsum, which is mainly manifested in the storage process: ①The atmospheric influence induced by hydrogen fluoride gas, radionuclides, heavy metal elements adsorbed by nanoparticles and the greenhouse effect; ②The variation of water pH, the abnormality of heavy metal content, the living environment of phytoplankton and the imbalance of Marine phosphorus cycle; ③Influence of soil pH and heavy metal content on soil environment. For the purpose of resource conservation and environmental protection, considering the current situation of comprehensive utilization and treatment of phosphogypsum, the technical innovation of phosphogypsum disposal, the monitoring and evaluation of pollutant discharge from phosphogypsum storage sites, and the study of environmental toxicological effects of phosphogypsum storage sites should be the focus of future research.
  • loading
  • [1]
    Yang L, Zhang Y S, Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar[J]. Journal of Cleaner Production, 2016, 127: 204-213. doi: 10.1016/j.jclepro.2016.04.054
    [2]
    李逸晨. 石膏行业的发展现状及趋势[J]. 硫酸工业, 2019(11): 1-7, 13. doi: 10.3969/j.issn.1002-1507.2019.11.001

    Li Yichen. Development status and trend of gypsum industry[J]. Sulphuric Acid Industry, 2019(11): 1-7, 13. doi: 10.3969/j.issn.1002-1507.2019.11.001
    [3]
    贾晗, 刘军省, 焦森, 等. 长江经济带磷矿资源开发与生态保护现状分析及对策建议[J]. 中国矿业, 2021, 30(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202102011.htm

    Jia Han, Liu Junxing, Jiao Sen, et al. Situation analysis and countermeasures of phosphate rock resources exploitation and ecological protection in Yangtze River Economic Belt[J]. China Mining Magazine, 2021, 30(2): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202102011.htm
    [4]
    杨荣金, 张钰莹, 张乐, 等. 长江流域"三磷"综合整治"十四五"策略[J]. 生态经济, 2021, 37(3): 187-191, 206. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202103029.htm

    Yang Rongjin, Zhang Yuying, Zhang Le, et al. The strategy of comprehensive regulation of phosphate rock, phosphorus chemicals and phosphogypsum in the Yangtze River Basin during the 14th five-year plan period[J]. Ecological Economy, 2021, 37(3): 187-191, 206. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202103029.htm
    [5]
    马丽萍. 磷石膏资源化综合利用现状及思考[J]. 磷肥与复肥, 2019, 34(7): 5-9. doi: 10.3969/j.issn.1007-6220.2019.07.004

    Ma Liping. Current situation and consideration of comprehensive utilization of phosphogypsumresources[J]. Phosphate & Compound Fertilizer, 2019, 34(7): 5-9. doi: 10.3969/j.issn.1007-6220.2019.07.004
    [6]
    国亚非, 赵泽阳, 张正虎, 等. 磷石膏的综合利用探讨[J]. 中国非金属矿工业导刊, 2021(4): 4-7. doi: 10.3969/j.issn.1007-9386.2021.04.002

    Guo Yafei, Zhao Zeyang, Zhang Zhenghu, et al. Study on comprehensive utilization of phosphogypsum[J]. China Non-metallic Minerals Industry, 2021(4): 4-7. doi: 10.3969/j.issn.1007-9386.2021.04.002
    [7]
    张利珍, 张永兴, 张秀峰, 等. 中国磷石膏资源化综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201904003.htm

    Zhang Lizhen, Zhang Yongxing, Zhang Xiufeng, et al. Research progress on resource utilization of phosphogypsum in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201904003.htm
    [8]
    吕伟, 吴赤球, 龚文辉, 等. 改性磷石膏轻骨料在路基材料中的应用研究[J]. 混凝土与水泥制品, 2022(6): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202206012.htm

    Lyu Wei, Wu Chiqiu, Gong Wenhui, et al. Research on the application of modified phosphogypsum lightweight aggregate in subgrade materials[J]. China Concrete and Cement Products, 2022(6): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202206012.htm
    [9]
    张立, 胡修权, 张晋, 等. 工业固废耦合磷石膏制备胶凝材料试验[J]. 非金属矿, 2022, 45(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202202008.htm

    Zhang Li, Hu Xiuquan, Zhang Jin, et al. Experiment on preparation of phosphogypsum cementitious materials with industrial waste[J]. Non-Metallic Mines, 2022, 45(2): 33-37. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSK202202008.htm
    [10]
    何东升, 张泽强, 张汉泉, 等. 磷石膏制取硫酸铵及其溶析结晶[J]. 武汉工程大学学报, 2011, 33(3): 12-15. doi: 10.3969/j.issn.1674-2869.2011.03.004

    He Dongsheng, Zhang Zeqiang, Zhang Hanquan, et al. (NH4)2SO4production via reaction of(NH4)2CO3and phosphogypsum[J]. Journal of Wuhan Institute of Technology, 2011, 33(3): 12-15. doi: 10.3969/j.issn.1674-2869.2011.03.004
    [11]
    黄旭, 黄健, 牛韵雅, 等. 磷石膏制备的耐热半水硫酸钙晶须表面疏水改性研究[J]. 硅酸盐通报, 2019, 38(7): 2021-2027. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201907008.htm

    Huang Xu, Huang Jian, Niu Yunya, et al. Research on surface hydrophobic modification of heat-resistant calcium sulfate hemihydrate whisker prepared from phosphogypsum[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2021-2027. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201907008.htm
    [12]
    沈立莹. 红磷分公司磷石膏综合利用现状[J]. 硫酸工业, 2014(1): 49-51. doi: 10.3969/j.issn.1002-1507.2014.01.013

    Shen Liying. Current situation of comprehensive utilization of phosphogypsum in Honglin Branch[J]. Sulphuric Acid Industry, 2014(1): 49-51. doi: 10.3969/j.issn.1002-1507.2014.01.013
    [13]
    黄宾, 杜之方, 张宜茂, 等. 磷石膏在花生作物上的肥效试验总结[J]. 硫磷设计与粉体工程, 2000(5): 47-48. doi: 10.3969/j.issn.1009-1904.2000.05.016

    Huang Bin, Du Zhifang, Zhang Yimao, et al. Summary of experiment on fertilizer efficiency of phosphogypsum on peanut crops[J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2000(5): 47-48. doi: 10.3969/j.issn.1009-1904.2000.05.016
    [14]
    杨灿, 黄升谋. 改性磷石膏对Pb(Ⅱ)的吸附性能研究[J]. 湖北文理学院学报, 2021, 42(2): 21-27. doi: 10.3969/j.issn.1009-2854.2021.02.004

    Yang Can, Huang Shengmou. Adsorption of Pb(Ⅱ)on modified phosphogypsum[J]. Journal of Hubei University of Arts and Science, 2021, 42(2): 21-27. doi: 10.3969/j.issn.1009-2854.2021.02.004
    [15]
    El Kateb A, Stalder C, Neururer C, et al. Correlation between pollution and decline of Scleractinian Cladocora caespitosa(Linnaeus, 1758)in the Gulf of Gabes[J]. Heliyon, 2016, 2(11): e00195. doi: 10.1016/j.heliyon.2016.e00195
    [16]
    Torres-Sánchez R, Sánchez-Rodas D, Sánchez de la Campa A M, et al. Hydrogen fluoride concentrations in ambient air of an urban area based on the emissions of a major phosphogypsum deposit(SW, Europe)[J]. Science of the Total Environment, 2020, 714: 136891. doi: 10.1016/j.scitotenv.2020.136891
    [17]
    李佳宣, 施泽明, 唐瑞玲, 等. 磷石膏堆场对周围农田土壤重金属含量的影响[J]. 中国非金属矿工业导刊, 2010(5): 52-55. doi: 10.3969/j.issn.1007-9386.2010.05.017

    Li Jiaxuan, Shi Zeming, Tang Ruiling, et al. Influence of phosphogypsum pile on the concentration of heavy metals in farming soil[J]. China Non-Metallic Minerals Industry, 2010(5): 52-55. doi: 10.3969/j.issn.1007-9386.2010.05.017
    [18]
    Alguacil J, Capelo R, García T, et al. Cumulative internal dose of uranium in workers close to phosphogypsum waste piles[J]. Epidemiology, 2009, 20(6): S170.
    [19]
    曹阳. 贵州磷石膏综合利用率99.22 %[J]. 硫酸工业, 2020(10): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY202010002.htm

    Cao Yang. The comprehensive utilization rate of Guizhou phosphogypsum is 99.22 %[J]. Sulphuric Acid Industry, 2020(10): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY202010002.htm
    [20]
    孙亚敏. 安徽省一般工业固废处置利用现状及监管建议[J]. 安徽化工, 2021, 47(1): 100-105. doi: 10.3969/j.issn.1008-553X.2021.01.033

    Sun Yamin. Current situation and supervision suggestion of general industrial solid waste utilization and disposal of Anhui Province[J]. Anhui Chemical Industry, 2021, 47(1): 100-105. doi: 10.3969/j.issn.1008-553X.2021.01.033
    [21]
    崔荣政, 白海丹, 高永峰, 等. 磷石膏综合利用现状及"十四五"发展趋势[J]. 无机盐工业, 2022, 54(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202204030.htm

    Cui Rongzheng, Bai Haidan, Gao Yongfeng, et al. Current situation of comprehensive utilization of phosphogypsum and its development trend of 14th Five-Year Plan[J]. Inorganic Chemicals Industry, 2022, 54(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG202204030.htm
    [22]
    李英翔, 蒋太光, 刘红. 云南省磷化工行业发展现状及绿色高质量发展建议[J]. 磷肥与复肥, 2021, 36(9): 5-9. doi: 10.3969/j.issn.1007-6220.2021.09.003

    Li Yingxiang, Jiang Taiguang, Liu Hong. Development status and suggestions for green and high quality development of phosphorus chemical industry in Yunnan[J]. Phosphate & Compound Fertilizer, 2021, 36(9): 5-9. doi: 10.3969/j.issn.1007-6220.2021.09.003
    [23]
    齐卓, 张建刚, 苏向东. 磷石膏中稀土元素浸出研究进展[J]. 稀土, 2022, 43(2): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202202002.htm

    Qi Zhuo, Zhang Jiangang, Su Xiangdong. Research progress on leaching of rare earth elements in phosphogypsum[J]. Chinese Rare Earths, 2022, 43(2): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202202002.htm
    [24]
    李伟, 李庆军. 远安县磷矿采空区和磷石膏尾矿库现状分析及处置对策[J]. 科技视界, 2015(23): 269-270. doi: 10.3969/j.issn.2095-2457.2015.23.201

    Li Wei, Li Qingjun. Analysis and disposal of mined-out area and phosphogypsum tailings pond in Yuan 'an County[J]. Science & Technology Vision, 2015(23): 269-270. doi: 10.3969/j.issn.2095-2457.2015.23.201
    [25]
    杜婷婷, 李志清, 周应新, 等. 水泥磷石膏稳定材料用于路面基层的探究[J]. 公路, 2018, 63(2): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201802038.htm

    Du Tingting, Li Zhiqing, Zhou Yingxin, et al. A study on the application of cement phosphogypsum stabilized material in pavement base[J]. Highway, 2018, 63(2): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201802038.htm
    [26]
    李荣巧, 王转. 磷石膏的技术特性及其在半刚性基层中的应用[J]. 绿色环保建材, 2018(5): 145. doi: 10.16767/j.cnki.10-1213/tu.2018.05.130

    Li Rongqiao, Wang Zhuan. Technical characteristics of phosphogypsum and its application in semi-rigid base[J]. Green Environmental Protection Building Materials, 2018(5): 145. doi: 10.16767/j.cnki.10-1213/tu.2018.05.130
    [27]
    韩敏芳, 王军伟, 刘泽. 世界性的研究课题: 磷石膏特性及开发前景[J]. 国外建材科技, 2003, 24(6): 15-17. doi: 10.3963/j.issn.1674-6066.2003.06.004

    Han Meifang, Wang Junwei, Liu Ze. World research topic: Characteristics and development prospect of phosphogypsum[J]. The World of Building Materials, 2003, 24(6): 15-17. doi: 10.3963/j.issn.1674-6066.2003.06.004
    [28]
    陈嘉康. 磷石膏填充灌浆料研究与工程应用[D]. 上海: 上海交通大学, 2017.
    [29]
    兰玉书, 石梏岐, 杨刚, 等. 磷石膏堆场周边水稻土重金属污染特征及稻米的人体健康风险分析[J]. 地球环境学报, 2021, 12(2): 224-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202102010.htm

    Lan Yushu, Shi Guqi, Yang Gang, et al. Status of heavy metal pollution in paddy soil and human health risk assessment of rice around phosphogypsum yard[J]. Journal of Earth Environment, 2021, 12(2): 224-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ202102010.htm
    [30]
    何秉顺, 田亚护, 张平虎, 等. 干堆磷石膏大型渣场设计概述[J]. 磷肥与复肥, 2011, 26(2): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LFYF201102011.htm

    He Bingshun, Tian Yahu, Zhang Pinghu, et al. Summary on designing the large-scale slag dump of dry stack phosphogypsum[J]. Phosphate & Compound Fertilizer, 2011, 26(2): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-LFYF201102011.htm
    [31]
    赵建华, 杨祥, 高士浩. 石膏矿物学分析及除杂研究[J]. 硫酸工业, 2018(9): 9-12, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY201809003.htm

    Zhao Jianhua, Yang Xiang, Gao Shihao. Gypsum mineralogy analysis and impurity removal research[J]. Sulphuric Acid Industry, 2018(9): 9-12, 15. https://www.cnki.com.cn/Article/CJFDTOTAL-LSGY201809003.htm
    [32]
    朱鹏程, 罗鸣坤, 王国栋. 磷石膏脱硅柱浮选工艺研究[J]. 云南化工, 2016, 43(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201605001.htm

    Zhu Pengcheng, Luo Mingkun, Wang Guodong. Desilicification of phosphogypsum by column flotation process[J]. Yunnan Chemical Technology, 2016, 43(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHG201605001.htm
    [33]
    Silva L F O, Hower J C, Dotto G L, et al. Nanoparticles from evaporite materials in Colombian coal mine drainages[J]. International Journal of Coal Geology, 2020, 230: 103588.
    [34]
    黄尧. 磷石膏堆场周边土壤重金属污染特征及磷石膏农用资源化研究[D]. 南昌: 南昌大学, 2017.
    [35]
    余军, 王磊, 贺华明, 等. 湖北省磷石膏综合利用与对策[J]. 资源环境与工程, 2018, 32(1): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201801038.htm

    Yu Jun, Wang Lei, He Huaming, et al. Comprehensive utilization and countermeasures of phosphogypsum in Hubei Province[J]. Resources Environment & Engineering, 2018, 32(1): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201801038.htm
    [36]
    唐明珠, 王志英, 王云山, 等. EBSD-XPS法分析磷石膏中杂质物相[J]. 光谱学与光谱分析, 2022, 42(1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202201028.htm

    Tang Mingzhu, Wang Zhiying, Wang Yunshan, et al. Characterization of the impurity phases in phosphogypsum by the EBSD-XPS method[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 136-140. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202201028.htm
    [37]
    Romero-Hermida M I, Flores-Alés V, Hurtado-Bermúdez S J, et al. Environmental impact of phosphogypsum-derived building materials[J]. International Journal of Environmental Research and Public Health, 2020, 17(12): 4248.
    [38]
    Lewandowska A, Falkowska L, Jóźwik J. Factors determining the fluctuation of fluoride concentrations in PM10 aerosols in the urbanized coastal area of the Baltic Sea(Gdynia, Poland)[J]. Environmental Science and Pollution Research International, 2013, 20(9): 6109-6118.
    [39]
    Borrego E, Mas J L, Martín J E, et al. Radioactivity levels in aerosol particles surrounding a large TENORM waste repository after application of preliminary restoration work[J]. Science of the Total Environment, 2007, 377(1): 27-35.
    [40]
    El Zrelli R, Courjault-Radé P, Rabaoui L, et al. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes City, Gulf of Gabes, SE Tunisia[J]. Marine Pollution Bulletin, 2015, 101(2): 922-929.
    [41]
    Korany K A, Masoud A M, Rushdy O E, et al. Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(1): 391-399.
    [42]
    Wilke C M, Tong T Z, Gaillard J F, et al. Attenuation of microbial stress due to nano-Ag and nano-TiO2 interactions under dark conditions[J]. Environmental Science & Technology, 2016, 50(20): 11302-11310.
    [43]
    Lütke S F, Oliveira M L S, Silva L F O, et al. Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry[J]. Chemosphere, 2020, 256: 127138.
    [44]
    Dévai I, Felföldy L, Wittner I, et al. Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere[J]. Nature, 1988, 333: 343-345.
    [45]
    Glindemann D, Edwards M, Schrems O. Phosphine and methylphosphine production by simulated lightning—a study for the volatile phosphorus cycle and cloud formation in the earth atmosphere[J]. Atmospheric Environment, 2004, 38(39): 6867-6874. http://epic.awi.de/11998/1/Gli2004a.pdf
    [46]
    Gassmann G, Glindemann D. Phosphane(PH3)in the biosphere[J]. Angewandte Chemie International Edition in English, 1993, 32(5): 761-763.
    [47]
    Hanrahan G, Salmassi T M, Khachikian C S, et al. Reduced inorganic phosphorus in the natural environment: significance, speciation and determination[J]. Talanta, 2005, 66(2): 435-444.
    [48]
    Gargouri D, Azri C, Serbaji M M, et al. Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia[J]. Environmental Monitoring and Assessment, 2011, 175(1-4): 519-530.
    [49]
    McCulloch M, Falter J, Trotter J, et al. Coral resilience to ocean acidification and global warming through pH up-regulation[J]. Nature Climate Change, 2012, 2(8): 623-627.
    [50]
    Messaoudi I, Deli T, Kessabi K, et al. Association of spinal deformities with heavy metal bioaccumulation in natural populations of grass goby, Zosterisessor ophiocephalus Pallas, 1811 from the Gulf of Gabès(Tunisia)[J]. Environmental Monitoring and Assessment, 2009, 156(1-4): 551-560.
    [51]
    El Zrelli R, Courjault-Radé P, Rabaoui L, et al. Heavy metal contamination and ecological risk assessment in the surface sediments of the coastal area surrounding the industrial complex of Gabes City, Gulf of Gabes, SE Tunisia[J]. Marine Pollution Bulletin, 2015, 101(2): 922-929.
    [52]
    Guo T, Malone R F, Rusch K A. Stabilized phosphogypsum: class C fly ash: Portland type Ⅱ cement composites for potential marine application[J]. Environmental Science & Technology, 2001, 35(19): 3967-3973.
    [53]
    Cloern J E. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California[J]. Reviews of Geophysics, 1996, 34(2): 127-168.
    [54]
    冯志华. 海洋沉积物中磷化氢的分布、释放与转化研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2008.
    [55]
    Ben Brahim M, Hamza A, Hannachi I, et al. Variability in the structure of epiphytic assemblages of Posidonia oceanica in relation to human interferences in the Gulf of Gabes, Tunisia[J]. Marine Environmental Research, 2010, 70(5): 411-421.
    [56]
    周强, 姜允斌, 郝记华, 等. 磷的生物地球化学循环研究进展[J]. 高校地质学报, 2021, 27(2): 183-199. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202102006.htm

    Zhou Qiang, Jiang Yunbin, Hao Jihua, et al. Advances in the study of biogeochemical cycles of phosphorus[J]. Geological Journal of China Universities, 2021, 27(2): 183-199. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202102006.htm
    [57]
    Ruttenberg K C. The global phosphorus cycle[J]. //Treatise on Geochemistry, 2003(2): 585-643.
    [58]
    谢荣, 吴永贵, 王晓睿, 等. 磷石膏浸出液对斑马鱼的急性毒性及氧化应激损伤[J]. 环境科学学报, 2021, 41(3): 1101-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202103037.htm

    Xie Rong, Wu Yonggui, Wang Xiaorui, et al. Acute toxicity and oxidative stress damage of phosphogypsum leachate to zebrafish(Danio rerio)[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1101-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202103037.htm
    [59]
    李二云. 土壤酸碱性对植物生长的影响及其改良措施[J]. 现代农村科技, 2012(6): 48-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201206047.htm

    Li Eryun. Effects of soil acidity and alkalinity on plant growth and improvement measures[J]. Modern Rural Science and Technology, 2012(6): 48-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201206047.htm
    [60]
    于长毅. 酸雨的形成、危害及防治[J]. 环境保护与循环经济, 2017, 37(9): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201709017.htm

    Yu Changyi. Formation, harm and prevention of acid rain[J]. Environmental Protection and Circular Economy, 2017, 37(9): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-LNCX201709017.htm
    [61]
    王萍, 刘静, 朱健, 等. 岩溶山区磷石膏堆场重金属迁移对耕地质量的影响及污染风险管控[J]. 水土保持通报, 2019, 39(4): 294-299. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201904047.htm

    Wang Ping, Liu Jing, Zhu Jian, et al. Impacts of heavy metal migration on quality of cultivated land and control of pollution risk in phosphogypsum yard in Karst Mountain area[J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 294-299. https://www.cnki.com.cn/Article/CJFDTOTAL-STTB201904047.htm
    [62]
    Enamorado S, Abril J M, Delgado A, et al. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain[J]. Journal of Hazardous Materials, 2014, 266: 122-131.
    [63]
    Papageorgiou F, Godelitsas A, Mertzimekis T J, et al. Environmental impact of phosphogypsum stockpile in remediated Schistos waste site(Piraeus, Greece)using a combination of γ-ray spectrometry with geographic information systems[J]. Environmental Monitoring and Assessment, 2016, 188(3): 1-14.
    [64]
    查学芳, 覃应机, 吴攀, 等. 磷石膏堆场渗漏影响下岩溶地下水地球化学过程[J]. 生态学杂志, 2018, 37(6): 1708-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201806014.htm

    Zha Xuefang, Qin Yingji, Wu Pan, et al. Geochemical process of Karst groundwater as affected by the leakage of phosphogypsum stock dump[J]. Chinese Journal of Ecology, 2018, 37(6): 1708-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201806014.htm
    [65]
    Lund K, Refsnes M, Ramis I, et al. Human exposure to hydrogen fluoride induces acute neutrophilic, eicosanoid, and antioxidant changes in nasal lavage fluid[J]. Inhalation Toxicology, 2002, 14(2): 119-132.
    [66]
    陈飞, 肖国平. 附红细胞体病研究进展[J]. 检验检疫科学, 2003, 13(4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSJ200304019.htm

    Chen Fei, Xiao Guoping. Advances in Eperythrosomal disease[J]. Quality Safety Inspection and Testing, 2003, 13(4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSJ200304019.htm
    [67]
    韦艳, 谢春, 张华, 等. 雌激素与年龄对氟中毒影响的实验研究[J]. 中国地方病学杂志, 2003, 22(5): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDFB200305005.htm

    Wei Yan, Xie Chun, Zhang Hua, et al. The experimental study on the factors which impacting fluorosis[J]. Chinese Journal of Endemiology, 2003, 22(5): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDFB200305005.htm
    [68]
    刘咏梅, 夏曙华, 邹文兵, 等. 低蛋白条件对燃煤型氟中毒雌鼠卵巢颗粒细胞的影响[J]. 环境与健康杂志, 2017, 34(7): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201707026.htm

    Liu Yongmei, Xia Shuhua, Zhou Wenbing, et al. Effect of low protein condition on ovarian granulosa cells of female rats with coal-burning fluorosis[J]. Journal of Environment and Health, 2017, 34(7): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201707026.htm
    [69]
    Shao L Y, Hu Y, Shen R R, et al. Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing[J]. Science of the Total Environment, 2017, 579: 1152-1160.
    [70]
    邵龙义, 宋晓焱, 郑继东. 煤矿区大气颗粒物及煤炭固体废物物理化学特征及生物活性研究[M]. 北京: 科学出版社, 2017.
    [71]
    Zhang M Y, Shao L Y, Jones T, et al. Hemolysis of PM10on RBCs in vitro: an indoor air study in a coal-burning lung cancer epidemic area[J]. Geoscience Frontiers, 2022, 13(1): 101176.
    [72]
    刘兴国, 白雯静, 田妮娜, 等. 不同红细胞溶血实验替代兔眼刺激性实验比较研究[J]. 科技视界, 2019(32): 232-233, 216. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201932110.htm

    Liu Xingguo, Bai Wenjing, Tian Nina, et al. A comparative study of different hemolysis experiments instead of rabbit eye stimulation experiments[J]. Science & Technology Vision, 2019(32): 232-233, 216. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201932110.htm
    [73]
    Lund K, Refsnes M, Ramis I, et al. Human exposure to hydrogen fluoride induces acute neutrophilic, eicosanoid, and antioxidant changes in nasal lavage fluid[J]. Inhalation Toxicology, 2002, 14(2): 119-132.
    [74]
    Ozsvath D L. Fluoride and environmental health: a review[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 59-79.
    [75]
    龚镇. 化工百科全书[M]. 北京: 化学工业出版社, 1996: 436-437.
    [76]
    Jović M, Stanković S. Human exposure to trace metals and possible public health risks via consumption of mussels Mytilus galloprovincialis from the Adriatic coastal area[J]. Food and Chemical Toxicology, 2014, 70: 241-251.
    [77]
    El Kateb A, Stalder C, Rüggeberg A, et al. Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes(Tunisia)[J]. PLOS One, 2018, 13(5): 1-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article Metrics

    Article views (437) PDF downloads(64) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return