Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zhang Qin, Li Xianbo, Mao Song, Zhang Tiebin. Application progress of molecular simulation in phosphate ore flotation[J]. Journal of Mining Science and Technology, 2023, 8(1): 102-114. doi: 10.19606/j.cnki.jmst.2023.01.010
Citation: Zhang Qin, Li Xianbo, Mao Song, Zhang Tiebin. Application progress of molecular simulation in phosphate ore flotation[J]. Journal of Mining Science and Technology, 2023, 8(1): 102-114. doi: 10.19606/j.cnki.jmst.2023.01.010

Application progress of molecular simulation in phosphate ore flotation

doi: 10.19606/j.cnki.jmst.2023.01.010
  • Received Date: 2022-07-30
  • Rev Recd Date: 2022-09-20
  • Publish Date: 2023-02-28
  • Flotation is the main method to improve the quality and reduce the impurity of calcium magnesium phosphate ore. However, the similar surface physical and chemical properties of dolomite and fluorapatite make it difficult to separate efficiently. With the development of quantum mechanics and computational chemistry, molecular simulation has gradually become an effective tool for studying the flotation of calcium magnesium phosphate ore. It provides a new method for studying the crystal chemical properties of the main minerals in calcium-magnesium phosphate ore and the interaction between mineral interfaces. On the basis of reviewing the research, especially the wettability, surface electricity and surface adsorption characteristics, this paper summarizes the methods of molecular simulation, and the application of density functional theory(DFT)and molecular dynamics simulation(MDS)in the flotation separation of fluorapatite and dolomite, including the chemical properties of crystals, the interaction of water molecules and reagents with mineral surfaces. In addition, the application prospects of molecular simulation in phosphate ore flotation research are also discussed.
  • loading
  • [1]
    US G S. Mineral commodity summaries 2022[R]. Reston, VA: National Minerals Information Center, 2022.
    [2]
    Sis H, Chander S. Reagents used in the flotation of phosphate ores: a critical review[J]. Minerals Engineering, 2003, 16(7): 577-585. doi: 10.1016/S0892-6875(03)00131-6
    [3]
    Somasundaran P, Markovic B. Interfacial properties of calcium phosphates[M]. Boston, MA: Springer, 1998: 82-101.
    [4]
    Somasundaran P, Amankonah J O, Ananthapadmabhan K P. Mineral—solution equilibria in sparingly soluble mineral systems[J]. Colloids and Surfaces, 1985, 15(3): 309-333.
    [5]
    Amankonah J O, Somasundaran P. Effects of dissolved mineral species on the electrokinetic behavior of calcite and apatite[J]. Colloids and Surfaces, 1985, 15(3): 335-353.
    [6]
    Ananthapadmanabhan K P, Somasundaran P. Surface precipitation of inorganics and surfactants and its role in adsorption and flotation[J]. Colloids and Surfaces, 1985, 13(2): 151-167.
    [7]
    Liu C, Hu Y, Cao X. Substituent effects in kaolinite flotation using dodecyl tertiary amines[J]. Minerals Engineering, 2009, 22(9): 849-852.
    [8]
    Hu Y, Wei S, Hao J, et al. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations[J]. International Journal of Mineral Processing, 2005, 76(3): 163-172. doi: 10.1016/j.minpro.2004.12.009
    [9]
    Hu Y, Sun W, Wang D. Electrochemistry of activation flotation of sulphide minerals[M]. Berlin Heidelberg: Springer, 2009.
    [10]
    胡岳华, 邱冠周, 王淀佐. 细粒浮选体系中界面极性相互作用理论及应用[J]. 中南矿冶学院学报, 1993, 24(6): 749-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199306006.htm

    Hu Yuehua, Qiu Guanzhou, Wang Dianzuo. The theory and application of interfacial polar interactions in flotation of fine particles[J]. Journal of Central South University: Science and Technology, 1993, 24(6): 749-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD199306006.htm
    [11]
    Qiu Y Q, Cui W Y, Li L J, et al. Structural, electronic properties with different terminations for fluorapatite(001)surface: A first-principles investigation[J]. Computational Materials Science, 2017, 126: 132-138. doi: 10.1016/j.commatsci.2016.09.027
    [12]
    Li X, Zhang Q, Hou B, et al. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms[J]. Powder Technology, 2017, 318: 224-229. doi: 10.1016/j.powtec.2017.06.003
    [13]
    Santos E, Dutra A, Oliveira J. The effect of jojoba oil on the surface properties of calcite and apatite aiming at their selective flotation[J]. International Journal of Mineral Processing, 2015, 143: 34-38. doi: 10.1016/j.minpro.2015.08.002
    [14]
    Zhou F, Wang L, Xu Z, et al. Reactive oily bubble technology for flotation of apatite, dolomite and quartz[J]. International Journal of Mineral Processing, 2015, 134: 74-81. doi: 10.1016/j.minpro.2014.11.009
    [15]
    Miller J D, Yin X H, Nalaskowski J, et al. Molecular features of water films created with bubbles at silica surfaces[J]. Surface Innovations, 2015, 3(1): 20-26. doi: 10.1680/si.14.00006
    [16]
    Lu Y, Zheng S, Wang S, et al. Vibrational spectra and molecular dynamics of hydrogen peroxide molecules at quartz/water interfaces[J]. Journal of Molecular Structure, 2016, 1113: 70-78. doi: 10.1016/j.molstruc.2016.01.085
    [17]
    Zhou F, Wang L, Xu Z, et al. Role of reactive oily bubble in apatite flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513: 11-19.
    [18]
    Chennakesavulu K, Bhaskar Raju G, Prabhakara S, et al. Adsorption of oleate on fluorite surface as revealed by atomic force microscopy[J]. International Journal of Mineral Processing, 2009, 90(1/2/3/4): 101-104.
    [19]
    Paiva P R P, Monte M B M, Simão R A, et al. In situ AFM study of potassium oleate adsorption and calcium precipitate formation on an apatite surface[J]. Minerals Engineering, 2011, 24(5): 387-395. doi: 10.1016/j.mineng.2010.11.009
    [20]
    Kou J, Tao D, Xu G. Fatty acid collectors for phosphate flotation and their adsorption behavior using QCM-D[J]. International Journal of Mineral Processing, 2010, 95(1-4): 1-9. doi: 10.1016/j.minpro.2010.03.001
    [21]
    Cao Q, Cheng J, Wen S, et al. A mixed collector system for phosphate flotation[J]. Minerals Engineering, 2015, 78: 114-121. doi: 10.1016/j.mineng.2015.04.020
    [22]
    Wang C, Cao X, Guo L, et al. Effect of adsorption of catanionic surfactant mixtures on wettability of quartz surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509: 564-573. doi: 10.1016/j.colsurfa.2016.09.057
    [23]
    Yu J, Ge Y, Guo X, et al. The depression effect and mechanism of NSFC on dolomite in the flotation of phosphate ore[J]. Separation and Purification Technology, 2016, 161: 88-95. doi: 10.1016/j.seppur.2016.01.044
    [24]
    高贺然. 胶磷矿与白云石表面捕收剂吸附特性与可浮性研究[D]. 贵阳: 贵州大学, 2018.
    [25]
    叶军建. 微细粒磷灰石浮选的界面调控研究[D]. 贵阳: 贵州大学, 2019.
    [26]
    Liu G Y, Yang X G, Zhong H. Molecular design of flotation collectors: A recent progress[J]. Advances in Colloid and Interface Science, 2017, 246: 181-195. doi: 10.1016/j.cis.2017.05.008
    [27]
    陈建华. 硫化矿物浮选固体物理研究[M]. 长沙: 中南大学出版社, 2015.
    [28]
    Gao Z, Sun W, Hu Y. New insights into the dodecylamine adsorption on scheelite and calcite: An adsorption model[J]. Minerals Engineering, 2015, 79: 54-61. doi: 10.1016/j.mineng.2015.05.011
    [29]
    Wang Z Z, Ren Z J, Gao H M, et al. Effect of active substance content and molecular weight of petroleum sulfonate on fluorite flotation: molecular dynamics simulation[J]. Minerals Engineering, 2021, 174.
    [30]
    Zhang Y B, Lu M M, Su Z J, et al. Interfacial reaction between humic acid and Ca-Montmorillonite: application in the preparation of a novel pellet binder[J]. Applied Clay Science, 2019, 180: 105177. doi: 10.1016/j.clay.2019.105177
    [31]
    Han G, Su S, Huang Y, et al. An insight into flotation chemistry of pyrite with isomeric xanthates: A combined experimental and computational study[J]. Minerals, 2018, 8(4): 166. doi: 10.3390/min8040166
    [32]
    Chen W, Chen F F, Zhang Z H, et al. Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems[J]. Minerals Engineering, 2021, 160: 106705. doi: 10.1016/j.mineng.2020.106705
    [33]
    Chen Y, Chen J, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals Engineering, 2010, 23(14): 1120-1130. doi: 10.1016/j.mineng.2010.07.005
    [34]
    Fa K Q, Nguyen A, Miller J. Interaction of calcium dioleate collector colloids with calcite and fluorite surfaces as revealed by AFM force measurements and molecular dynamics simulation[J]. International Journal of Mineral Processing, 2006, 81(3): 166-177. doi: 10.1016/j.minpro.2006.08.006
    [35]
    Du H, Miller J D. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces[J]. International Journal of Mineral Processing, 2007, 84(1): 172-184.
    [36]
    Lewars E. Computational Chemistry: Introduction to the theory and applications of molecular and quantum mechanics[M]. Dordrecth, Netherlands: Kluwer Academic Publishers, 2003.
    [37]
    郝海青, 李丽匣, 张晨, 等. 经典分子动力学模拟在矿物浮选研究中的应用[J]. 矿产保护与利用, 2018(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201803004.htm

    Hao Haiqing, Li Lixia, Zhang Chen, et al. Application of classic molecular dynamics simulations in minerals flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 9-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH201803004.htm
    [38]
    Fa K Q, Nguyen A V, Miller J D. Hydrophobic attraction as revealed by AFM force measurements and molecular dynamics simulation[J]. The Journal of Physical Chemistry B, 2005, 109(27): 13112-13118. doi: 10.1021/jp0445526
    [39]
    Allinger N, Burkert U. Molecular mechanics[J]. ACS Monograph, 177, 1982.
    [40]
    Xia Y C, Zhang R, Cao Y J, et al. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: a review[J]. Fuel, 2019, 262: 116535.
    [41]
    Xu Y, Liu Y, He D, et al. Adsorption of cationic collectors and water on muscovite(001)surface: A molecular dynamics simulation study[J]. Minerals Engineering, 2013, 53: 101-107. doi: 10.1016/j.mineng.2013.07.006
    [42]
    Cygan R T, Greathouse J A, Kalinichev A G. Advances in clayff molecular simulation of layered and nanoporous materials and their aqueous interfaces[J]. The Journal of Physical Chemistry C, 2021, 125(32): 17573-17589. doi: 10.1021/acs.jpcc.1c04600
    [43]
    赵林艳, 刘阳思, 席晓丽, 等. 基于第一性原理计算的纳米氧化钨研究进展[J]. 无机材料学报, 2021, 36(11): 1125-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL202111001.htm

    Zhao Linyan, Liu Yangsi, Xi Xiaoli, et al. First-principles study on nanoscale tungsten oxide: a review[J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-WGCL202111001.htm
    [44]
    Miller J D, Wang X M, Jin J Q, et al. Interfacial water structure and the wetting of mineral surfaces[J]. International Journal of Mineral Processing, 2016, 156: 62-68. doi: 10.1016/j.minpro.2016.02.004
    [45]
    Mutisya S M, Kirch A, de Almeida J M, et al. Molecular dynamics simulations of water confined in calcite slit pores: an NMR spin relaxation and hydrogen bond analysis[J]. The Journal of Physical Chemistry C, 2017, 121(12): 6674-6684. doi: 10.1021/acs.jpcc.6b12412
    [46]
    Luo Y J, Ou L M, Chen J H, et al. Effects of defects and impurities on the adsorption of H2O on smithsonite(101)surfaces: insight from DFT-D and MD[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628: 127300. doi: 10.1016/j.colsurfa.2021.127300
    [47]
    何桂春, 华亚南, 蒋巍, 等. 分子动力学模拟及其在选矿中的应用[J]. 有色金属科学与工程, 2015, 6(5): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201505017.htm

    He Guichun, Hua Yanan, Jiang Wei, et al. Molecular dynamics simulation and its application to mineral processing[J]. Nonferrous Metals Science and Engineering, 2015, 6(5): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYS201505017.htm
    [48]
    王贤晨, 张覃, 陈建华, 等. 氟磷灰石与石英表面电子性质及胺类捕收剂吸附作用研究[J]. 贵州大学学报: 自然科学版, 2017, 34(6): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201706005.htm

    Wang Xianchen, Zhang Qin, Chen Jianhua, et al. Electronic properties and amine collectors effect of fluorapatite and quartz surface[J]. Journal of Guizhou University: Natural Sciences, 2017, 34(6): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI201706005.htm
    [49]
    谢俊. 贵州织金磷块岩中稀土类质同象机理研究[D]. 贵阳: 贵州大学, 2020.
    [50]
    Cui W Y, Song X L, Chen J H, et al. Adsorption behaviors of different water structures on the fluorapatite(001)surface: a DFT study[J]. Frontiers in Materials, 2020, 7: 47. doi: 10.3389/fmats.2020.00047
    [51]
    Hughes J M, Rakovan J. The crystal structure of apatite, Ca5(PO4)3(F, OH, Cl)[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 1-12. doi: 10.2138/rmg.2002.48.1
    [52]
    谢俊, 张覃. 氟磷灰石Ca位点成键特性的密度泛函理论研究[J]. 贵州科学, 2021, 39(1): 89-96. doi: 10.3969/j.issn.1003-6563.2021.01.018

    Xie Jun, Zhang Qin. Study on the bonding characteristics of Ca sites in fluorapatite based on density functional theory[J]. Guizhou Science, 2021, 39(1): 89-96. doi: 10.3969/j.issn.1003-6563.2021.01.018
    [53]
    Xie J, Li X H, Mao S, et al. Effects of structure of fatty acid collectors on the adsorption of fluorapatite(001)surface: a first-principles calculations[J]. Applied Surface Science, 2018, 444: 699-709. doi: 10.1016/j.apsusc.2018.03.105
    [54]
    Xie J, Zhang Q, Mao S, et al. Anisotropic crystal plane nature and wettability of fluorapatite[J]. Applied Surface Science, 2019, 493: 294-307. doi: 10.1016/j.apsusc.2019.06.195
    [55]
    陈晔, 陈建华, 郭进. 天然杂质对闪锌矿电子结构和半导体性质的影响[J]. 物理化学学报, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001

    Chen Ye, Chen Jianhua, Guo Jin. Effect of natural impurities on the electronic structures and semiconducting properties of sphalerite[J]. Acta Physico-Chimica Sinica, 2010, 26(10): 2851-2856. doi: 10.3866/PKU.WHXB20101001
    [56]
    谢俊, 张覃, 卯松. 贵州织金磷块岩中稀土元素Y赋存状态研究[J]. 贵州大学学报: 自然科学版, 2020, 37(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI202001007.htm

    Xie Jun, Zhang Qin, Mao Song. Study on the occurrence state of rare earth element Y in Guizhou Zhijin phosphorite[J]. Journal of Guizhou University: Natural Sciences, 2020, 37(1): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDI202001007.htm
    [57]
    Wang X C, Zhang Q, Mao S, et al. A theoretical study on the electronic structure and floatability of rare earth elements(La, Ce, Nd and Y)bearing fluorapatite[J]. Minerals, 2019, 9(8): 500. doi: 10.3390/min9080500
    [58]
    Li Y Q, Chen J H, Chen Y, et al. DFT simulation on interaction of H2O molecules with ZnS and Cu-activated surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(5): 3048-3057. doi: 10.1021/acs.jpcc.8b12273
    [59]
    Zahn D, Hochrein O. Computational study of interfaces between hydroxyapatite and water[J]. Physical Chemistry Chemical Physics, 2003, 5(18): 4004. doi: 10.1039/b306358e
    [60]
    王贤晨. 钙镁质磷矿石中矿物表面润湿性调控研究[D]. 贵阳: 贵州大学, 2020.
    [61]
    Wright K, Cygan R T, Slater B. Structure of the(101-4)surfaces of calcite, dolomite and magnesite under wet and dry conditions[J]. Physical Chemistry Chemical Physics, 2001, 3(5): 839-844. doi: 10.1039/b006130l
    [62]
    Semmeq A, Foucaud Y, El Yamami N, et al. Hydration of magnesite and dolomite minerals: new insights from ab initio molecular dynamics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127697. doi: 10.1016/j.colsurfa.2021.127697
    [63]
    章铁斌, 张覃, 卯松, 等. 水分子与白云石(104)表面相互作用的第一性原理研究[J]. 有色金属: 选矿部分, 2022(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202201023.htm

    Zhang Tiebin, Zhang Qin, Mao Song, et al. DFT simulation on interaction of H2O molecules with dolomite(104)surface[J]. Nonferrous Metals: Mineral Processing Section, 2022(1): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202201023.htm
    [64]
    Reischl B, Raiteri P, Gale J D, et al. Atomistic simulation of atomic force microscopy imaging of hydration layers on calcite, dolomite, and magnesite surfaces[J]. The Journal of Physical Chemistry C, 2019, 123(24): 14985-14992. doi: 10.1021/acs.jpcc.9b00939
    [65]
    Liu Y C, Chen J H, Li Y Q, et al. First-principles study on the adsorption structure of water molecules on a pyrite(100)surface[J]. Physicochemical Problems of Mineral Processing, 2021: 57(2): 121-130.
    [66]
    潘海华, 陶锦辉, 吴韬, 等. 羟基磷灰石界面水行为的分子模拟[J]. 无机化学学报, 2006, 22(8): 1392-1400. doi: 10.3321/j.issn:1001-4861.2006.08.006

    Pan Haihua, Tao Jinhui, Wu Tao, et al. Molecular simulation of water behaviors on hydroxyapatite crystal faces[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(8): 1392-1400. doi: 10.3321/j.issn:1001-4861.2006.08.006
    [67]
    Pareek A, Torrelles X, Angermund K, et al. Structure of interfacial water on fluorapatite(100)surface[J]. Langmuir, 2008, 24(6): 2459-2464. doi: 10.1021/la701929p
    [68]
    Yin W Z, Tang Y. Interactive effect of minerals on complex ore flotation: a brief review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 571-583. doi: 10.1007/s12613-020-1999-y
    [69]
    汪洋, 唐敏, 黄宋魏, 等. 组合捕收剂浮选回收云南某铁尾矿中的磷[J]. 矿产保护与利用, 2022, 42(2): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202202011.htm

    Wang Yang, Tang Min, Huang Songwei, et al. Flotation recovery of phosphorous from with combined colecters from an iron tailings in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202202011.htm
    [70]
    Ruan Y Y, Zhang Z Q, Luo H H, et al. Ambient temperature flotation of sedimentary phosphate ore using cottonseed oil as a collector[J]. Minerals, 2017, 7(5): 65. doi: 10.3390/min7050065
    [71]
    Guimarães R C, Araujo A C, Peres A E C. Reagents in igneous phosphate ores flotation[J]. Minerals Engineering, 2005, 18(2): 199-204. doi: 10.1016/j.mineng.2004.08.022
    [72]
    Cai J Z, Deng J S, Wang L, et al. Reagent types and action mechanisms in ilmenite flotation: a review[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(9): 1656-1669. doi: 10.1007/s12613-021-2380-5
    [73]
    Eskanlou A, Huang Q Q, Foucaud Y, et al. Effect of Al3+ and Mg2+ on the flotation of fluorapatite using fatty- and hydroxamic-acid collectors—A multiscale investigation[J]. Applied Surface Science, 2022, 572: 151499. doi: 10.1016/j.apsusc.2021.151499
    [74]
    El-Mofty S E D, El-Midany A. Calcite flotation in potassium oleate/potassium dihydrogen phosphate system[J]. Journal of Surfactants and Detergents, 2015, 18(5): 905-911. doi: 10.1007/s11743-015-1707-5
    [75]
    Liu X, Ruan Y Y, Li C X, et al. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system[J]. International Journal of Mineral Processing, 2017, 167: 95-102. doi: 10.1016/j.minpro.2017.08.006
    [76]
    Cao Q, Zou H, Chen X, et al. Interaction of sulfuric acid with dolomite(104)surface and its impact on the adsorption of oleate anion: a DFT study[J]. Physicochemical Problems of Mineral Processing, 2020, 56(1): 34-42.
    [77]
    Cao Q B, Luo B, Wen S, et al. Influence of synergistic effect between dodecylamine and sodium oleate on improving the hydrophobicity of fluorapatite[J]. Physicochemical Problems of Mineral Processing, 2016, 53: 42-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (211) PDF downloads(52) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return