Volume 8 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Zuo Jianping, Li Ying, Li Hongjie, Yu Meilu, Wu Zuoqi, Liu Jiashun. The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001
Citation: Zuo Jianping, Li Ying, Li Hongjie, Yu Meilu, Wu Zuoqi, Liu Jiashun. The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering[J]. Journal of Mining Science and Technology, 2023, 8(1): 1-14. doi: 10.19606/j.cnki.jmst.2023.01.001

The model of spatial analogous hyperboloid for three-dimensional rock strata movement in mining engineering

doi: 10.19606/j.cnki.jmst.2023.01.001
  • Received Date: 2022-09-01
  • Rev Recd Date: 2022-09-20
  • Publish Date: 2023-02-28
  • Based on a large number of field investigations and the analysis of the "analogous hyperbolic" overall movement model proposed by the author, this paper further extends it to three-dimensional space, and proposes a full-space "analogous hyperboloid"three-dimensional movement model of the mining strata.There are two types of hyperboloids, "quasi-single-leaf"and "quasi-double-leaf", which can approximately describe the three-dimensional movement and surface subsidence characteristics of full-space mining strata under different lithological conditions.The "analogous single leaf hyperboloid" model is a horizontal moving boundary model of the spatial rock layer, which is implicit in the thick loose layer overlying rock; the "analogous double leaf hyperboloid" model is the vertical movement of the spatial surface subsidence and the overlying fissure arch and caving arch.The boundary models are approximately symmetrical with the "origin" in the main key layer, and are embodied in external forms such as surface subsidence under mining disturbance and arch caving of the surrounding rock in the stope. Through theoretical analysis, similar model test and 3DEC numerical simulation, this paper deduces and proves in detail the "analogous hyperboloid" model of spatially mined rock strata movement and surface subsidence under the condition of near-horizontal coal seam mining in thick loose layers.At the same time, this study analyzed the composition conditions, influencing factors and overall migration law of the co-asymptotic conical surface "analogous hyperboloid" model.Results show that under the condition of near-horizontal coal seam mining with thin bedrock and thick loose layer, the "quasi-hyperboloid" theoretical model is in good alignment with the 3DEC simulation results, indicating that the overlying rock migration and surface subsidence in space mining are "analogous hyperboloid" feature.
  • loading
  • [1]
    许延春, 张玉卓. 应用离散元法分析采矿引起厚松散层变形的特征[J]. 煤炭学报, 2002, 27(3): 268-272. doi: 10.3321/j.issn:0253-9993.2002.03.010

    Xu Yanchun, Zhang Yuzhuo. Deformation characteristicsof the thick unconsolidated layers due to mining by UDEC[J]. Journal of China Coal Society, 2002, 27(3): 268-272. doi: 10.3321/j.issn:0253-9993.2002.03.010
    [2]
    刘义新, 戴华阳, 姜耀东. 厚松散层矿区采动岩土体移动规律模拟试验研究[J]. 采矿与安全工程学报, 2012, 29(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201205018.htm

    Liu Yixin, Dai Huayang, Jiang Yaodong. Model test for mining-induced movement law of rock and soil mass under thick unconsolidated layers[J]. Journal of Mining & Safety Engineering, 2012, 29(5): 700-706. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201205018.htm
    [3]
    Hu H F, Lian X G. Subsidence rules of underground coal mines for different soil layer thickness: Lu'an Coal Base as an example, China[J]. International Journal of Coal Science & Technology, 2015, 2(3): 178-185.
    [4]
    钱鸣高, 朱德仁, 王作棠. 老顶岩层断裂型式及对工作面来压的影响[J]. 中国矿业学院学报, 1986, 15(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198602001.htm

    Qian Minggao, Zhu Deren, Wang Zuotang. The fracture types of main roof and their effects on roof pressure in coal face[J]. Journal of China University of Mining & Technology, 1986, 15(2): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD198602001.htm
    [5]
    钱鸣高, 缪协兴, 何富连. 采场"砌体梁"结构的关键块分析[J]. 煤炭学报, 1994, 19(6): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB406.000.htm

    Qian Minggao, Miao Xiexing, He Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society, 1994, 19(6): 557-563. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB406.000.htm
    [6]
    钱鸣高, 缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报, 1995, 14(2): 97-106. doi: 10.3321/j.issn:1000-6915.1995.02.006

    Qian Minggao, Miao Xiexing. Theoretical analysis on the structukal form and stability of overlying stkata in longwall mining[J]. Chinese Journal of Rock Mechanics and Engineering, 1995, 14(2): 97-106. doi: 10.3321/j.issn:1000-6915.1995.02.006
    [7]
    钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 225-230. doi: 10.3321/j.issn:0253-9993.1996.03.001

    Qian Minggao, Miao Xiexing, Xu Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society, 1996, 21(3): 225-230. doi: 10.3321/j.issn:0253-9993.1996.03.001
    [8]
    郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(2): 509-523. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002001.htm

    Guo Wenbing, Bai Erhu, Zhao Gaobo. Current status and progress on overburden and surface damage and prevention technology of high-intensity mining[J]. Journal of China Coal Society, 2020, 45(2): 509-523. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002001.htm
    [9]
    许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 25(2): 122-126. doi: 10.3321/j.issn:0253-9993.2000.02.003

    Xu Jialin, Qian Minggao. Study on the influence of key strata movement on subsidence[J]. Journal of China Coal Society, 2000, 25(2): 122-126. doi: 10.3321/j.issn:0253-9993.2000.02.003
    [10]
    许家林, 钱鸣高, 朱卫兵. 覆岩主关键层对地表下沉动态的影响研究[J]. 岩石力学与工程学报, 2005, 24(5): 787-791. doi: 10.3321/j.issn:1000-6915.2005.05.009

    Xu Jialin, Qian Minggao, Zhu Weibing. Study on influences of primary key stratum on surface dynamic subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 787-791. doi: 10.3321/j.issn:1000-6915.2005.05.009
    [11]
    于斌, 朱卫兵, 高瑞, 等. 特厚煤层综放开采大空间采场覆岩结构及作用机制[J]. 煤炭学报, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm

    Yu Bin, Zhu Weibing, Gao Rui, et al. Strata structure and its effect mechanism of large space stope for fullymechanized sublevel caving mining of extremely thick coal seam[J]. Journal of China Coal Society, 2016, 41(3): 571-580. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201603008.htm
    [12]
    于斌, 朱卫兵, 李竹, 等. 特厚煤层开采远场覆岩结构失稳机理[J]. 煤炭学报, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm

    Yu Bin, Zhu Weibing, Li Zhu, et al. Mechanism of the instability of strata structure in far field for super-thick coal seam mining[J]. Journal of China Coal Society, 2018, 43(9): 2398-2407. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201809004.htm
    [13]
    黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm

    Huang Qingxiang, Du Junwu, Hou Enke, et al. Research on overburden and ground surface cracks distribution and formation mechanism in shallow coal seams group mining[J]. Journal of Mining & Safety Engineering, 2019, 36(1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201901002.htm
    [14]
    Huang Q X, He Y P. Research on overburden movement characteristics of large mining height working face in shallow buried thin bedrock[J]. Energies, 2019, 12(21): 4208.
    [15]
    左建平, 孙运江, 钱鸣高. 厚松散层覆岩移动机理及"类双曲线"模型[J]. 煤炭学报, 2017, 42(6): 1372-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706003.htm

    Zuo Jianping, Sun Yunjiang, Qian Minggao. Movement mechanism and analogous hyperbola model of overlying strata with thick alluvium[J]. Journal of China Coal Society, 2017, 42(6): 1372-1379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706003.htm
    [16]
    左建平, 孙运江, 王金涛, 等. 充分采动覆岩"类双曲线"破坏移动机理及模拟分析[J]. 采矿与安全工程学报, 2018, 35(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801011.htm

    Zuo Jianping, Sun Yunjiang, Wang Jintao, et al. Mechanical and numerical analysis of "analogous hyperbola" movement of overlying strata after full mining extraction[J]. Journal of Mining & Safety Engineering, 2018, 35(1): 71-77. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201801011.htm
    [17]
    左建平, 孙运江, 文金浩, 等. 岩层移动理论与力学模型及其展望[J]. 煤炭科学技术, 2018, 46(1): 1-11, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801001.htm

    Zuo Jianping, Sun Yunjiang, Wen Jinhao, et al. Theoretical and mechanical models of rock strata movement and their prospects[J]. Coal Science and Technology, 2018, 46(1): 1-11, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201801001.htm
    [18]
    Sun Y J, Zuo J P, Karakus M, et al. A novel method for predicting movement and damage of overburden caused by shallow coal mining[J]. Rock Mechanics and Rock Engineering, 2020, 53(4): 1545-1563.
    [19]
    Sun Y J, Zuo J P, Karakus M, et al. Investigation of movement and damage of integral overburden during shallow coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117: 63-75.
    [20]
    孙运江. 采动覆岩破断移动机理及"类双曲线"模型研究[D]. 北京: 中国矿业大学(北京), 2019.
    [21]
    左建平, 吴根水, 孙运江, 等. 岩层移动内外"类双曲线"整体模型研究[J]. 煤炭学报, 2021, 46(2): 333-343. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102002.htm

    Zuo Jianping, Wu Genshui, Sun Yunjiang, et al. Investigation on the inner and outer analogous hyperbola model(AHM)of strata movement[J]. Journal of China Coal Society, 2021, 46(2): 333-343. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202102002.htm
    [22]
    刘宝琛, 廖国华. 煤矿地表移动的基本规律[M]. 北京: 中国工业出版社, 1965.
    [23]
    邓喀中, 马伟民. 开采沉陷中的岩体节理效应[J]. 岩石力学与工程学报, 1996, 15(4): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX604.006.htm

    Deng Kazhong, Ma Weimin. Effect of rockmass joints on mining subsidence[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15(4): 345-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX604.006.htm
    [24]
    杨伦, 戴华阳. 关于我国采煤沉陷计算方法的思考[J]. 煤矿开采, 2016, 21(2): 7-9, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602003.htm

    Yang Lun, Dai Huayang. Thoughts of calculation method of coal mining subsidence in home[J]. Coal Mining Technology, 2016, 21(2): 7-9, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201602003.htm
    [25]
    黄庆享. 浅埋煤层保水开采岩层控制研究[J]. 煤炭学报, 2017, 42(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701007.htm

    Huang Qingxiang. Research on roof control of water conservation mining in shallow seam[J]. Journal of China Coal Society, 2017, 42(1): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201701007.htm
    [26]
    左建平, 陈忠辉, 王怀文, 等. 深部煤矿采动诱发断层活动规律[J]. 煤炭学报, 2009, 34(3): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200903004.htm

    Zuo Jianping, Chen Zhonghui, Wang Huaiwen, et al. Experimental investigation on fault activation pattern under deep mining[J]. Journal of China Coal Society, 2009, 34(3): 305-309. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200903004.htm
    [27]
    左建平, 于美鲁, 胡顺银, 等. 不同厚度岩层破断模式实验研究[J]. 采矿与岩层控制工程学报, 2019, 1(2): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902008.htm

    Zuo Jianping, Yu Meilu, Hu Shunyin, et al. Experimental investigation on fracture mode of different thick rock strata[J]. Journal of Mining and Strata Control Engineering, 2019, 1(2): 88-96. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201902008.htm
    [28]
    Zuo J P, Yu M L, Li C Y, et al. Analysis of surface cracking and fracture behavior of a single thick main roof based on similar model experiments in western coal mine, China[J]. Natural Resources Research, 2021, 30(1): 657-680.
    [29]
    徐芝纶. 弹性力学简明教程[M]. 4版. 北京: 高等教育出版社, 2013.
    [30]
    吴作启. 薄基岩厚松散含水层采煤工作面溃水溃砂机理及灾害防治技术研究[D]. 北京: 中国矿业大学(北京), 2018.
    [31]
    曹健, 黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探, 2021, 49(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202104026.htm

    Cao Jian, Huang Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. Coal Geology & Exploration, 2021, 49(4): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202104026.htm
    [32]
    王军, 赵欢欢, 刘晶歌. 薄基岩浅埋煤层工作面地表动态移动规律研究[J]. 矿业安全与环保, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm

    Wang Jun, Zhao Huanhuan, Liu Jingge. Study on dynamic law of surface movement above working face of shallow-buried coal seam with thin bedrock[J]. Mining Safety & Environmental Protection, 2016, 43(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ENER201601006.htm
    [33]
    李建伟. 西部浅埋厚煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D]. 徐州: 中国矿业大学, 2017.
    [34]
    李圣军. 哈拉沟煤矿高强度开采覆岩与地表破坏特征研究[D]. 焦作: 河南理工大学, 2015.
    [35]
    吕林根, 许子道. 解析几何[M]. 4版. 北京: 高等教育出版社, 2006.
    [36]
    Wang S F, Li X B, Wang S Y. Separation and fracturing in overlying strata disturbed by longwall mining in a mineral deposit seam[J]. Engineering Geology, 2017, 226: 257-266.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (532) PDF downloads(83) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return