Volume 6 Issue 3
May  2021
Turn off MathJax
Article Contents
Chen Yulong, Cao Peng. Review of time-dependent fracture model of concrete[J]. Journal of Mining Science and Technology, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005
Citation: Chen Yulong, Cao Peng. Review of time-dependent fracture model of concrete[J]. Journal of Mining Science and Technology, 2021, 6(3): 290-295. doi: 10.19606/j.cnki.jmst.2021.03.005

Review of time-dependent fracture model of concrete

doi: 10.19606/j.cnki.jmst.2021.03.005
  • Received Date: 2020-12-08
  • Rev Recd Date: 2021-02-03
  • Publish Date: 2021-06-01
  • The integrity of concrete structures under strong earthquakes and the stability of concrete structures with cracks are concerns of national security strategies.These two issues are closely related to the time-dependent fracture behavior of concrete.The time-domain dependent fracture behavior of concrete can be generalized into two aspects: short-term impact fracture under dynamic impact load and long-term steady-state creep fracture failure.Although they both are related to time, there is a huge difference in the loading time, which leads to the different internal mechanism of dynamic failure in concrete.Herein, the development history and main achievements of time-dependent fracture model of concrete are reviewed, including macroscopic fracture mechanics model and method, mesoscopic fracture mechanics model and method, dynamic fracture, and creep fracture behavior of concrete.
  • loading
  • [1]
    沈新普, 鲍文博, 沈国晓. 混凝土断裂与损伤[M]. 北京: 冶金工业出版社, 2004.
    [2]
    Kaplan M. Crack propagation and the fracture of concrete[J]. ACI Journal Proceedings, 1961, 58(11): 591-610. http://www.researchgate.net/publication/309546953_Crack_propagation_and_the_fracture_of_concrete
    [3]
    Ngo D, Scordelis A. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967, 64(3): 152-163. http://ci.nii.ac.jp/naid/10003194327
    [4]
    Rashid Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344. doi: 10.1016/0029-5493(68)90066-6
    [5]
    Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [6]
    Bažant Z P, Oh B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177. doi: 10.1007/BF02486267
    [7]
    Jenq Y, Shah S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111(10): 1227-1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
    [8]
    徐世烺. 混凝土断裂力学[M]. 北京: 科学出版社, 2011.
    [9]
    Ince R. Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes[J]. Engineering Fracture Mechanics, 2010, 77(12): 2233-2250. doi: 10.1016/j.engfracmech.2010.05.007
    [10]
    Kumar S, Barai S V. Determining double-K fracture parameters of concrete for compact tension and wedge splitting tests using weight function[J]. Engineering Fracture Mechanics, 2009, 76(7): 935-948. doi: 10.1016/j.engfracmech.2008.12.018
    [11]
    Krajcinovic D, Fanella D. A micromechanical damage model for concrete[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 585-596. http://www.sciencedirect.com/science/article/pii/001379448690024X
    [12]
    Mazars J. A description of micro-and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 729-737. http://www.sciencedirect.com/science/article/pii/0013794486900366
    [13]
    Suaris W, Shah S P. Constitutive model for dynamic loading of concrete[J]. Journal of Structural Engineering, 1985, 111(3): 563-576. doi: 10.1061/(ASCE)0733-9445(1985)111:3(563)
    [14]
    Li Q B, Zhang C H, Wang G L. Dynamic damage constitutive model of concrete in uniaxial tension[J]. Engineering Fracture Mechanics, 1996, 53(3): 449-455. doi: 10.1016/0013-7944(95)00123-9
    [15]
    Pijaudier-Cabot G, Bažant Z P. Nonlocal damage theory[J]. Journal of Engineering Mechanics, 1987, 113(10): 1512-1533. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
    [16]
    Lemaitre J, Desmorat R. Engineering damage mechanics[M]. Springer Berlin Heidelberg, 2005.
    [17]
    唐欣薇, 张楚汉. 随机骨料投放的分层摆放法及有限元坐标的生成[J]. 清华大学学报: 自然科学版, 2008, 48(12): 2048-2052. doi: 10.3321/j.issn:1000-0054.2008.12.006

    Tang Xinwei, Zhang Chuhan. Layering disposition and FE coordinate generation for random aggregate arrangements[J]. Journal of Tsinghua University: Science and Technology, 2008, 48(12): 2048-2052. doi: 10.3321/j.issn:1000-0054.2008.12.006
    [18]
    唐欣薇, 张楚汉. 基于改进随机骨料模型的混凝土细观断裂模拟[J]. 清华大学学报: 自然科学版, 2008, 48(3): 348-351, 356. doi: 10.3321/j.issn:1000-0054.2008.03.012

    Tang Xinwei, Zhang Chuhan. Simulation of meso-fracture for concrete based on the developed random aggregate model[J]. Journal of Tsinghua University: Science and Technology, 2008, 48(3): 348-351, 356. doi: 10.3321/j.issn:1000-0054.2008.03.012
    [19]
    李运成, 马怀发, 陈厚群, 等. 混凝土随机凸多面体骨料模型生成及细观有限元剖分[J]. 水利学报, 2006, 37(5): 588-592. doi: 10.3321/j.issn:0559-9350.2006.05.012

    Li Yuncheng, Ma Huaifa, Chen Houqun, et al. Approach to generation of random convex polyhedral aggregate model and plotting for concrete meso-mechanics[J]. Journal of Hydraulic Engineering, 2006, 37(5): 588-592. doi: 10.3321/j.issn:0559-9350.2006.05.012
    [20]
    杜修力, 田瑞俊, 彭一江. 预静载对全级配混凝土梁动弯拉强度的影响[J]. 地震工程与工程振动, 2009, 29(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200902014.htm

    Du Xiuli, Tian Ruijun, Peng Yijiang. Influence of initial static loading on dynamical bending strength of fully-graded concrete beam[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200902014.htm
    [21]
    马怀发, 陈厚群, 黎保琨. 预静载作用下混凝土梁的动弯拉强度[J]. 中国水利水电科学研究院学报, 2005, 3(3): 168-172, 178. doi: 10.3969/j.issn.1672-3031.2005.03.002

    Ma Huaifa, Chen Houqun, Li Baokun. The concrete dynamical bending strength under static pre-loading[J]. Journal of China Institute of Water, 2005, 3(3): 168-172, 178. doi: 10.3969/j.issn.1672-3031.2005.03.002
    [22]
    马怀发, 陈厚群, 阳昌陆. 复杂动荷载作用下全级配混凝土损伤机理细观数值试验[J]. 土木工程学报, 2012, 45(7): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207024.htm

    Ma Huaifa, Chen Houqun, Yang Changlu. Numerical tests of meso-scale damage mechanism for full graded concrete under complicated dynamic loads[J]. China Civil Engineering Journal, 2012, 45(7): 175-182. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201207024.htm
    [23]
    Wu M X, Chen Z F, Zhang C H. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: Ⅰ. Drop-weight tests[J]. Engineering Fracture Mechanics, 2015, 135: 94-112. doi: 10.1016/j.engfracmech.2014.12.019
    [24]
    Wu M X, Zhang C H, Chen Z F. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: Ⅱ. Particle element simulation and comparison[J]. Engineering Fracture Mechanics, 2015, 135: 113-125. doi: 10.1016/j.engfracmech.2014.12.020
    [25]
    Xu R, Yang X H, Yin A Y, et al. A three-dimensional aggregate generation and packing algorithm for modeling asphalt mixture with graded aggregates[J]. Journal of Mechanics, 2010, 26(2): 165-171. doi: 10.1017/S1727719100003026
    [26]
    Yin A Y, Yang X H, Yang S F, et al. Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity[J]. Engineering Fracture Mechanics, 2011, 78(12): 2414-2428. doi: 10.1016/j.engfracmech.2011.06.001
    [27]
    张浩博, 黄松梅. 混凝土的徐变断裂[J]. 水利学报, 1995, 26(6): 57-61, 56. doi: 10.3321/j.issn:0559-9350.1995.06.009

    Zhang Haobo, Huang Songmei. Creep fracture for concrete[J]. Journal of Hydraulic Engineering, 1995, 26(6): 57-61, 56. doi: 10.3321/j.issn:0559-9350.1995.06.009
    [28]
    Resende L. A Damage mechanics constitutive theory for the inelastic behaviour of concrete[J]. Computer Methods in Applied Mechanics and Engineering, 1987, 60(1): 57-93. doi: 10.1016/0045-7825(87)90130-7
    [29]
    郭少华. 混凝土蠕变损伤分析模型[J]. 西安建筑科技大学学报, 1995, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ503.011.htm

    Guo Shaohua. Damage model of concrete creep[J]. Journal of Xi'an University of Architecture & Technology, 1995, 27(3): 299-303. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ503.011.htm
    [30]
    Bažant Z P, Chern J C. Strain softening with creep and exponential algorithm[J]. Journal of Engineering Mechanics, 1985, 111(3): 391-415. doi: 10.1061/(ASCE)0733-9399(1985)111:3(391)
    [31]
    徐涛, 林皋, 唐春安, 等. 拉伸载荷作用下混凝土蠕变-损伤破坏过程数值模拟[J]. 土木工程学报, 2007, 40(1): 28-33. doi: 10.3321/j.issn:1000-131X.2007.01.005

    Xu Tao, Lin Gao, Tang Chun'an, et al. Numerical simulation of creep-damage failure process of concrete under sustained tensile loading[J]. China Civil Engineering Journal, 2007, 40(1): 28-33. doi: 10.3321/j.issn:1000-131X.2007.01.005
    [32]
    Arzt E, Wilkinson D S. Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction[J]. Acta Metallurgica, 1986, 34(10): 1893-1898. doi: 10.1016/0001-6160(86)90247-6
    [33]
    Böck N, Kager F. Finite element simulation of the creep behaviour of 9 % chromium steels based on micromechanical considerations[C]. Materials Science and Technology 2005 Conference and Exhibition, Pittsburgh, PA, USA, 2005.
    [34]
    Fournier B, Sauzay M, Pineau A. Micromechanical model of the high temperature cyclic behavior of 9 % -12 % Cr martensitic steels[J]. International Journal of Plasticity, 2011, 27(11): 1803-1816. doi: 10.1016/j.ijplas.2011.05.007
    [35]
    Sklenička V, Kuchařová K, Dlouhy A, et al. Creep behaviour and microstructure of a 9 % Cr steel[C]//Materials for Advanced Power Engineering 1994. Dordrecht: Springer Netherlands, 1994: 435-444.
    [36]
    Graham A, Walles K F A. Relations between long and short time properties of commercial alloys[J]. JISI, 1955, 193: 105.
    [37]
    Phillips P. The slow stretch in indiarubber, glass, and metal wires when subjected to a constant pull[J]. Proceedings of the Physical Society of London, 1903, 19(1): 491-511. doi: 10.1088/1478-7814/19/1/342
    [38]
    Conway J B, Mullikin M J. An evaluation of various first stage creep equations[C]. Proceedings of AIME conference, Detroit, Michegan, 1962.
    [39]
    Norton F N. The creep of steel at high temperature[M]. New York: McGraw-Hill, 1929.
    [40]
    Nadai A. The influence of time upon creep. The hyperbolic sine creep law. Stephen Timoshenko anniversary volume[M]. New York: Macmillan, 1938. http://www.researchgate.net/publication/268898966_The_influence_of_time_upon_creep_The_hyperbolic_sine_creep_law
    [41]
    Kachanov L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1/2/3/4): 11-18. http://www.springerlink.com/content/v41gv32217w82567/
    [42]
    Rabotnov Y N. Creep problems in structural members[M]. Amsterdam: North-Holland Pub. Co.
    [43]
    Hayhurst D R, Brown P R, Morrison C J. The role of continuum damage in creep crack growth[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1984, 311(1516): 131-158. doi: 10.1098/rsta.1984.0022
    [44]
    Hall F R, Hayhurst D R, Brown P R. Prediction of plane-strain creep-crack growth using continuum damage mechanics[J]. International Journal of Damage Mechanics, 1996, 5(4): 353-383. doi: 10.1177/105678959600500402
    [45]
    Hayhurst D R. CDM mechanisms-based modelling of tertiary creep: ability to predict the life of engineering components[J]. Archives of Mechanics, 2005, 57(2/3): 103-132. http://www.researchgate.net/publication/268893253_CDM_mechanisms-based_modelling_of_tertiary_creep_Ability_to_predict_the_life_of_engineering_components
    [46]
    Saanouni K, Chaboche J L, Bathias C. On the creep crack growth prediction by a local approach[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 677-691. http://www.sciencedirect.com/science/article/pii/0013794486900329
    [47]
    Benallal A, Billardon R, Lemaitre J. Continuum damage mechanics and local approach to fracture: Numerical procedures[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 92(2): 141-155. doi: 10.1016/0045-7825(91)90236-Y
    [48]
    Liu Y, Murakami S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal Series A, 1998, 41(1): 57-65. doi: 10.1299/jsmea.41.57
    [49]
    Murakami S, Liu Y, Mizuno M. Computational methods for creep fracture analysis by damage mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(1/2): 15-33. http://www.sciencedirect.com/science/article/pii/S0045782599002091
    [50]
    Mclean M, Dyson B F. Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys[J]. Journal of Engineering Materials and Technology, 2000, 122(3): 273-278. doi: 10.1115/1.482798
    [51]
    Hyde T H, Becker A A, Sun W, et al. Finite-element creep damage analyses of P91 pipes[J]. International Journal of Pressure Vessels and Piping, 2006, 83(11/12): 853-863. http://www.sciencedirect.com/science/article/pii/S0308016106001542
    [52]
    Cocks A C F, Ashby M F. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science, 1980, 14(8/9): 395-402. doi: 10.1179/030634580790441187
    [53]
    Chilukuru H, Durst K, Wadekar S, et al. Coarsening of precipitates and degradation of creep resistance in tempered martensite steels[J]. Materials Science and Engineering: A, 2009, 510/511: 81-87. doi: 10.1016/j.msea.2008.04.088
    [54]
    Basirat M, Shrestha T, Potirniche G P, et al. A study of the creep behavior of modified 9Cr-1Mo steel using continuum-damage modeling[J]. International Journal of Plasticity, 2012, 37: 95-107. doi: 10.1016/j.ijplas.2012.04.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (387) PDF downloads(38) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return