Volume 9 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHAO Hongbao, ZHAI Rupeng, GE Haibin, CHEN Chaonan, LIU Shaoqiang, JING Shijie. Quantitative analysis of dust pollution characteristics and influencing factors in mining areas based on statistical modelling[J]. Journal of Mining Science and Technology, 2024, 9(2): 243-257. doi: 10.19606/j.cnki.jmst.2024.02.011
Citation: ZHAO Hongbao, ZHAI Rupeng, GE Haibin, CHEN Chaonan, LIU Shaoqiang, JING Shijie. Quantitative analysis of dust pollution characteristics and influencing factors in mining areas based on statistical modelling[J]. Journal of Mining Science and Technology, 2024, 9(2): 243-257. doi: 10.19606/j.cnki.jmst.2024.02.011

Quantitative analysis of dust pollution characteristics and influencing factors in mining areas based on statistical modelling

doi: 10.19606/j.cnki.jmst.2024.02.011
  • Received Date: 2023-09-16
  • Rev Recd Date: 2024-01-25
  • Publish Date: 2024-04-30
  • As disorderly dust emission of open-pit mines often leads to ecological degradation, this study therefore conducts a quantitative analysis on the evolution patterns of particle changes and the influence of environmental indicators on the weights of microdust. Taking the main regions of dust occurrence in Hequ open-pit coal mine as the subject for research, this study uses the dust monitoring system to obtain data on TSP, PM10, PM2.5 and environmental indicators in different target regions. We conducted comparative analysis on the differences in the distribution of particles with different sizes based on dust concentration and introduced the Institute for Administrative Quality Improvement method, Pearson correlation matrix analysis and Grey Relation Analysis to explore the core pollutants, the intrinsic correlation of dust with different particle sizes, and the correlation between environmental indicators and dust concentration in the target regions. Based on the univariate regression analysis, MLR and PCA-MLR, we verified the predictions of the MLR and the PCA-MLR model by MRE. The results show that: The concentration of dust with different particle sizes in Region No.1 (excavation site) and Region No.3 (coal yard) exceeded the secondary limit in the current standard, while the concentration in Region No.2 (traffic artery) only exceeded the primary limit. ②The dust pollution capacity of different regions was consistent with results from IAQI assessment: Region 1>Region 3>Region 2, where the core pollutants were all PM2.5. When the concentration of TSP was consistent in different regions, we found Region 2>Region 3>Region 1 in terms of their dust pollution capacity. ③Dust concentrations in different areas were found to be linearly significant. ④The patterns of fitting in multivariate linear equations based on MLR models of different regions tended to be consistent with the Pearson correlation of dust concentration, with the multivariate fit outperforming the univariate fit. We also found Region No.3 (3.02 %)> Region 2 (9.46 %)>Region 1 (10.75 %) in terms of the prediction accuracy of MLR model.⑤TSP and PM10 were strongly positively correlated with barometric pressure while PM2.5 was strongly negatively correlated with relative humidity in Region No.1;dust with different particle sizes was strongly negatively correlated with temperature and wind speed in Region No.2 yet only negatively correlated with temperature in Region No.3.⑥The PCA-MLR model outperformed the direct MLR model with a 56.63 % and 13.41 % increase in microdust weights and environmental indicators.
  • loading
  • [1]
    WANG Z M, ZHOU W, JISKANI I M, et al. Annual dust pollution characteristics and its prevention and control for environmental protection in surface mines[J]. Science of the Total Environment, 2022, 825: 153949. doi: 10.1016/j.scitotenv.2022.153949
    [2]
    LUO H T, ZHOU W, JISKANI I M, et al. Analyzing characteristics of particulate matter pollution in open-pit coal mines: implications for green mining[J]. Energies, 2021, 14(9): 2680. doi: 10.3390/en14092680
    [3]
    佟瑞鹏, 崔鹏程, 杨校毅, 等. 基于蒙特卡洛方法的煤矿粉尘健康损害不确定性分析[J]. 矿业科学学报, 2017, 2(5): 467-474. http://kykxxb.cumtb.edu.cn/article/id/97

    TONG Ruipeng, CUI Pengcheng, YANG Xiaoyi, et al. Uncertainty analysis of health damage of coal mine dust using the Monte Carlo method[J]. Journal of Mining Science and Technology, 2017, 2(5): 467-474. http://kykxxb.cumtb.edu.cn/article/id/97
    [4]
    常玲利, 邵龙义, 杨书申, 等. 大气污染综合治理攻坚行动前后北京市PM2.5质量浓度变化特征研究[J]. 矿业科学学报, 2019, 4(6): 539-546. http://kykxxb.cumtb.edu.cn/article/id/256

    CHANG Lingli, SHAO Longyi, YANG Shushen, et al. Study on variation characteristics of PM2.5 mass concentrations in Beijing after the action on comprehensive control of air pollution[J]. Journal of Mining Science and Technology, 2019, 4(6): 539-546. http://kykxxb.cumtb.edu.cn/article/id/256
    [5]
    WANG Z M, ZHOU W, JISKANI I M, et al. Dust pollution in cold region surface mines and its prevention and control[J]. Environmental Pollution, 2022, 292: 118293. doi: 10.1016/j.envpol.2021.118293
    [6]
    任晓芬, 郭军霞, 郜玉聪, 等. 铁渣转运廊道粉尘分布规律及其影响因素模拟研究[J]. 安全与环境工程, 2022, 29(6): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206022.htm

    REN Xiaofen, GUO Junxia, GAO Yucong, et al. Simulation study on the distribution law of dust in iron slag transfer corridor and its influencing factors[J]. Safety and Environmental Engineering, 2022, 29(6): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206022.htm
    [7]
    WANG J Z, DU C F, CHEN Z, et al. Influence of vehicle and pavement characteristics on dust resuspension from soil pavement of open-pit mine[J]. Science of the Total Environment, 2023, 878: 163252. doi: 10.1016/j.scitotenv.2023.163252
    [8]
    TANG W J, CAI Q X. Dust distribution in open-pit mines based on monitoring data and fluent simulation[J]. Environmental Monitoring and Assessment, 2018, 190(11): 632. doi: 10.1007/s10661-018-7004-9
    [9]
    张明浩, 赵廷宁, 肖辉杰. 内蒙古乌海粉尘浓度时空分布及影响因素探析[J]. 地学前缘, 2021, 28(4): 118-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104018.htm

    ZHANG Minghao, ZHAO Tingning, XIAO Huijie. Temporospatial distribution and influencing factor analysis of dust concentration in Wuhai, Inner Mongolia[J]. Earth Science Frontiers, 2021, 28(4): 118-130. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202104018.htm
    [10]
    蒋仲安, 曾发镔, 冯雪, 等. 高海拔隧道爆破后粉尘污染动力学模型及影响因素[J]. 煤炭学报, 2023, 48(1): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202301020.htm

    JIANG Zhongan, ZENG Fabin, FENG Xue, et al. Dynamic model and influencing factors of dust pollution after blasting in high altitude tunnel[J]. Journal of China Coal Society, 2023, 48(1): 263-278. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202301020.htm
    [11]
    KOK J, MAHOWALD N, ALBANI S, et al. An improved dust emission model with insights into the global dust cycle's climate sensitivity[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(5): 6361-6425.
    [12]
    张海霞, 程先富, 陈冉慧. 安徽省PM2.5时空分布特征及关键影响因素识别研究[J]. 环境科学学报, 2018, 38(3): 1080-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803031.htm

    ZHANG Haixia, CHENG Xianfu, CHEN Ranhui. Analysis on the spatial-temporal distribution characteristics and key influencing factors of PM2.5 in Anhui Province[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1080-1089. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201803031.htm
    [13]
    WU T, YANG Z, WANG A A, et al. A study on movement characteristics and distribution law of dust particles in open-pit coal mine[J]. Scientific Reports, 2021, 11: 14703. doi: 10.1038/s41598-021-94131-6
    [14]
    LI L, ZHANG R X, SUN J D, et al. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm[J]. Journal of Environmental Health Science and Engineering, 2021, 19(1): 401-414. doi: 10.1007/s40201-021-00613-0
    [15]
    阿尔祖娜·阿布力米提, 王敬哲, 王宏卫, 等. 新疆准东矿区土壤与降尘重金属空间分布及关联性分析[J]. 农业工程学报, 2017, 33(23): 259-266. doi: 10.11975/j.issn.1002-6819.2017.23.034

    AERZUNA Abulimiti, WANG Jingzhe, WANG Hongwei, et al. Spatial distribution analysis of heavy metals in soil and atmospheric dust fall and their relationships in Xinjiang Eastern Junggar mining area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(23): 259-266. doi: 10.11975/j.issn.1002-6819.2017.23.034
    [16]
    罗怀廷, 周伟, 刘宇, 等. 露天煤矿冬季坑底粉尘污染特征及影响因素[J]. 深圳大学学报: 理工版, 2020, 37(6): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL202006013.htm

    LUO Huaiting, ZHOU Wei, LIU Yu, et al. Pollution characteristics and influencing factors of dust at the bottom of open-pit coal mine in winter[J]. Journal of Shenzhen University: Science and Engineering, 2020, 37(6): 637-644. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL202006013.htm
    [17]
    赵洪宝, 刘绍强, 康钦容, 等. 基于数字分形原理的矿区粉尘时空分布与防治技术[J]. 矿业科学学报, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008

    ZHAO Hongbao, LIU Shaoqiang, KANG Qinrong, et al. Temporal and spatial distribution and prevention of dust in mining area based on digital fractal principle[J]. Journal of Mining Science and Technology, 2022, 7(6): 710-719. doi: 10.19606/j.cnki.jmst.2022.06.008
    [18]
    HUANG R X, CHUN L H. Seasonal variation characteristics and forecasting model of PM2.5 in Changsha, central city in China[J]. Journal of Environmental & Analytical Toxicology, 2017, 7(1): 429-435.
    [19]
    刘英, 许萍萍, 毕银丽, 等. 新疆戈壁煤矿露天开采对生态环境扰动定量分析[J]. 煤炭学报, 2023, 48(2): 959-974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202302032.htm

    LIU Ying, XU Pingping, BI Yinli, et al. Quantitative analysis of coal mining disturbance on environment in Xinjiang Gobi Open-pit mining area[J]. Journal of China Coal Society, 2023, 48(2): 959-974. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202302032.htm
    [20]
    李颖若, 汪君霞, 韩婷婷, 等. 利用多元线性回归方法评估气象条件和控制措施对APEC期间北京空气质量的影响[J]. 环境科学, 2019, 40(3): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201903002.htm

    LI Yingruo, WANG Junxia, HAN Tingting, et al. Using multiple linear regression method to evaluate the impact of meteorological conditions and control measures on air quality in Beijing during APEC 2014[J]. Environmental Science, 2019, 40(3): 1024-1034. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201903002.htm
    [21]
    HOSSEINI S, MOUSAVI A, MONJEZI M. Prediction of blast-induced dust emissions in surface mines using integration of dimensional analysis and multivariate regression analysis[J]. Arabian Journal of Geosciences, 2022, 15(2): 163. doi: 10.1007/s12517-021-09376-2
    [22]
    LÜ B L, COBOURN W G, BAI Y Q. Development of nonlinear empirical models to forecast daily PM2.5 and ozone levels in three large Chinese cities[J]. Atmospheric Environment, 2016, 147: 209-223. doi: 10.1016/j.atmosenv.2016.10.003
    [23]
    HUERTAS J I, HUERTAS M E, CERVANTES G, et al. Assessment of the natural sources of particulate matter on the opencast mines air quality[J]. Science of the Total Environment, 2014, 493: 1047-1055. doi: 10.1016/j.scitotenv.2014.05.111
    [24]
    吴益玲, 李成名, 戴昭鑫, 等. 城区空气质量指数时空分布特征及影响机制分析[J]. 测绘通报, 2020(4): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202004015.htm

    WU Yiling, LI Chengming, DAI Zhaoxin, et al. Spatial and temporal distribution characteristics and influencing mechanisms of air quality index in urban areas[J]. Bulletin of Surveying and Mapping, 2020(4): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB202004015.htm
    [25]
    张晓彬, 于渤. 基于皮尔森相关性分析和BP神经网络的北京城市雾霾治理对策[J]. 系统工程, 2023, 41(2): 26-34.

    ZHANG Xiaobin, YU Bo. Beijing urban haze control strategy based on Pearson correlation analysis and BP neural network[J]. Systems Engineering, 2023, 41(2): 26-34.
    [26]
    王远, 杜翠凤, 靳文波, 等. 深凹露天矿复环流决定参数准则方程式的建立[J]. 煤炭学报, 2018, 43(5): 1365-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805021.htm

    WANG Yuan, DU Cuifeng, JIN Wenbo, et al. Establishment of criterion equation for decision parameter of recombination circulation in deep Sunken open-pit mine[J]. Journal of China Coal Society, 2018, 43(5): 1365-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805021.htm
    [27]
    王亮, 廖晓雪, 查梦霞, 等. 基于主成分分析法的松软煤体煤尘润湿特性研究[J]. 煤炭科学技术, 2020, 48(2): 104-109.

    WANG Liang, LIAO Xiaoxue, ZHA Mengxia, et al. Study on wetting characteristics of coal dust in soft coal based on principal component analysis[J]. Coal Science and Technology, 2020, 48(2): 104-109.
    [28]
    刘潇, 薛莹, 纪毓鹏, 等. 基于主成分分析法的黄河口及其邻近水域水质评价[J]. 中国环境科学, 2015, 35(10): 3187-3192.

    LIU Xiao, XUE Ying, JI Yupeng, et al. An assessment of water quality in the Yellow River Estuary and its adjacent waters based on principal component analysis[J]. China Environmental Science, 2015, 35(10): 3187-3192.
    [29]
    王志明. 哈尔乌素露天煤矿冬季坑底粉尘污染特征及扩散规律[D]. 中国矿业大学, 2021.

    WANG Zhiming. Pollution characteristics and diffusion law of dust at the pit bottom in haerwusu open-pit coal mine in winter[D]. China University of Mining and Technology, 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (40) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return