Volume 9 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Zhenbo, FAN Yurun, ZUO Jianping. The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars[J]. Journal of Mining Science and Technology, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006
Citation: WANG Zhenbo, FAN Yurun, ZUO Jianping. The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars[J]. Journal of Mining Science and Technology, 2024, 9(2): 190-198. doi: 10.19606/j.cnki.jmst.2024.02.006

The impact of temperature and pre-wetting of aggregates on rheological properties of coal gangue mortars

doi: 10.19606/j.cnki.jmst.2024.02.006
  • Received Date: 2023-11-03
  • Rev Recd Date: 2024-01-20
  • Publish Date: 2024-04-30
  • Mine filling and tunnel spraying projects pose high requirements on the rheological properties of cement-based materials.The types, conditions of fine sands and the exposed environment have significant effects on the rheological properties.In this light, this paper uses coal gangue sand instead of quartz sand as the fine aggregate of cement-based material and investigates the effect of temperature and aggregate prewetting on the rheological properties of mortar and its mechanism.Results show that the shear stress-shear rate relationship of coal gangue mortar conforms to the characteristics of Herschel-Bulkley(H-B)model, with higher rheological index(higher than 1)and higher consistency than that of quartz sand mortar.The apparent viscosity of coal gangue mortar decreases with increasing temperature, but the effect of aggregate prewetting is not significant.The yield stress of coal gangue mortar at 30 ℃ is 2.99 Pa, 1.45 times higher than that at 10 ℃, and 2.13 times higher after prewetting.The thixotropic ring area of coal gangue mortar is higher than that of quartz sand mortar, and the thixotropic ring area of pre-wetting coal gangue mortar is 398.4 Pa/s, while that of dry coal gangue mortar is 283.3 Pa/s.The obtained results are expected to provide evidence for the rational utilization of coal gangue sand and the design and preparation of rheological materials served in complex environment.
  • loading
  • [1]
    王珩, 陆采荣, 刘伟宝, 等. 砂的级配特性对砂浆流变性的影响及预测[J]. 材料导报, 2020, 34(S2): 1255-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2052.htm

    WANG Heng, LU Cairong, LIU Weibao, et al. Influence of sand gradation characteristics on rheological properties of mortar and its prediction[J]. Materials Reports, 2020, 34(S2): 1255-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2052.htm
    [2]
    林忠财, 许潇, Hamideh Mehdizadeh, 等. 特细砂替代率对自密实砂浆流变性的影响[J]. 湖南大学学报: 自然科学版, 2022, 49(1): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202201011.htm

    LIN Zhongcai, XU Xiao, MEHDIZADEH H, et al. Influence of ultra fine sand replacement ratio on rheology of self-consolidating mortar[J]. Journal of Hunan University: Natural Sciences, 2022, 49(1): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202201011.htm
    [3]
    ZHU L L, JIN Z H, ZHAO Y, et al. Rheological properties of cemented coal gangue backfill based on response surface methodology[J]. Construction and Building Materials, 2021, 306: 124836. doi: 10.1016/j.conbuildmat.2021.124836
    [4]
    PETIT J Y, WIRQUIN E, DUTHOIT B. Influence of temperature on yield value of highly flowable micromortars made with sulfonate-based superplasticizers[J]. Cement and Concrete Research, 2005, 35(2): 256-266. doi: 10.1016/j.cemconres.2004.04.025
    [5]
    ORTIZ J, AGUADO A, AGULLó L, et al. Influence of environmental temperature and moisture content of aggregates on the workability of cement mortar[J]. Construction and Building Materials, 2009, 23(5): 1808-1814. doi: 10.1016/j.conbuildmat.2008.09.016
    [6]
    WANG M, ZHU Z J, LIU R T, et al. Influence of extreme high-temperature environment and hydration time on the rheology of cement slurry[J]. Construction and Building Materials, 2021, 295: 123684. doi: 10.1016/j.conbuildmat.2021.123684
    [7]
    ZHU H, KIM Y D, DE KEE D. Non-Newtonian fluids with a yield stress[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 129(3): 177-181. doi: 10.1016/j.jnnfm.2005.06.001
    [8]
    NGUYEN V H, REMOND S, GALLIAS J L. Influence of cement grouts composition on the rheological behaviour[J]. Cement and Concrete Research, 2011, 41(3): 292-300. doi: 10.1016/j.cemconres.2010.11.015
    [9]
    NEHDI M, RAHMAN M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cement and Concrete Research, 2004, 34(11): 1993-2007. doi: 10.1016/j.cemconres.2004.02.020
    [10]
    GÜLLÜ H. Comparison of rheological models for jet grout cement mixtures with various stabilizers[J]. Construction and Building Materials, 2016, 127: 220-236. doi: 10.1016/j.conbuildmat.2016.09.129
    [11]
    PETIT J Y, KHAYAT K H, WIRQUIN E. Coupled effect of time and temperature on variations of yield value of highly flowable mortar[J]. Cement and Concrete Research, 2006, 36(5): 832-841. doi: 10.1016/j.cemconres.2005.11.001
    [12]
    PETIT J Y, WIRQUIN E, KHAYAT K H. Effect of temperature on the rheology of flowable mortars[J]. Cement and Concrete Composites, 2010, 32(1): 43-53. doi: 10.1016/j.cemconcomp.2009.10.003
    [13]
    GOȽASZEWSKI J, SZWABOWSKI J. Influence of superplasticizers on rheological behaviour of fresh cement mortars[J]. Cement and Concrete Research, 2004, 34(2): 235-248. doi: 10.1016/j.cemconres.2003.07.002
    [14]
    PETIT J Y, WIRQUIN E, VANHOVE Y, et al. Yield stress and viscosity equations for mortars and self-consolidating concrete[J]. Cement and Concrete Research, 2007, 37(5): 655-670. doi: 10.1016/j.cemconres.2007.02.009
    [15]
    WILLIAMS D A, SAAK A W, JENNINGS H M. The influence of mixing on the rheology of fresh cement paste[J]. Cement and Concrete Research, 1999, 29(9): 1491-1496. doi: 10.1016/S0008-8846(99)00124-6
    [16]
    唐修生, 蔡跃波, 温金保, 等. 磨细矿渣复合浆体流变参数与流动度的相关性[J]. 硅酸盐学报, 2014, 42(5): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201405016.htm

    TANG Xiusheng, CAI Yuebo, WEN Jinbao, et al. Correlation between slump flow and rheological parameters of compound pastes with high volume of ground slag[J]. Journal of the Chinese Ceramic Society, 2014, 42(5): 648-652. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201405016.htm
    [17]
    JUIMO TCHAMDJOU W H, CHERRADI T, ABIDI M L, et al. Influence of different amounts of natural pozzolan from volcanic scoria on the rheological properties of Portland cement pastes[J]. Energy Procedia, 2017, 139: 696-702. doi: 10.1016/j.egypro.2017.11.274
    [18]
    VANCE K, KUMAR A, SANT G, et al. The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash[J]. Cement and Concrete Research, 2013, 52: 196-207. doi: 10.1016/j.cemconres.2013.07.007
    [19]
    张志军, 周琦, 温亚培, 等. 煤泥含量对重介质悬浮液稳定性和流动性的影响[J]. 矿业科学学报, 2020, 5(6): 696-702. doi: 10.19606/j.cnki.jmst.2020.06.013

    ZHANG Zhijun, ZHOU Qi, WEN Yapei, et al. Effect of coal slime content on dense medium suspension stability and fluidity[J]. Journal of Mining Science and Technology, 2020, 5(6): 696-702. doi: 10.19606/j.cnki.jmst.2020.06.013
    [20]
    ROMAGNOLI M, SASSATELLI P, LASSINANTTI GUALTIERI M, et al. Rheological characterization of fly ash-based suspensions[J]. Construction and Building Materials, 2014, 65: 526-534. doi: 10.1016/j.conbuildmat.2014.04.130
    [21]
    ROMAGNOLI M, LEONELLI C, KAMSE E, et al. Rheology of geopolymer by DOE approach[J]. Construction and Building Materials, 2012, 36: 251-258. doi: 10.1016/j.conbuildmat.2012.04.122
    [22]
    许延春, 张二蒙, 赵霖, 等. 黏度对浆液在裂隙岩体中扩散与充填规律的影响[J]. 矿业科学学报, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008

    XU Yanchun, ZHANG Ermeng, ZHAO Lin, et al. Study on the law of influence by slurry viscosity on the fractured aquifer grouting and diffusion[J]. Journal of Mining Science and Technology, 2021, 6(1): 71-81. doi: 10.19606/j.cnki.jmst.2021.01.008
    [23]
    王栋民, 张力冉, 张伟利, 等. 超塑化剂对新拌水泥浆体多级絮凝结构的影响[J]. 建筑材料学报, 2012, 15(6): 755-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201206006.htm

    WANG Dongmin, ZHANG Liran, ZHANG Weili, et al. Effects of superplasticizers on multi-level flocculation structure of fresh cement paste[J]. Journal of Building Materials, 2012, 15(6): 755-759. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201206006.htm
    [24]
    VIKAN H, JUSTNES H, WINNEFELD F, et al. Correlating cement characteristics with rheology of paste[J]. Cement and Concrete Research, 2007, 37(11): 1502-1511. doi: 10.1016/j.cemconres.2007.08.011
    [25]
    YIM H J, KIM J H, SHAH S P. Cement particle flocculation and breakage monitoring under Couette flow[J]. Cement and Concrete Research, 2013, 53: 36-43. doi: 10.1016/j.cemconres.2013.05.018
    [26]
    ROUSSEL N. Steady and transient flow behaviour of fresh cement pastes[J]. Cement and Concrete Research, 2005, 35(9): 1656-1664. doi: 10.1016/j.cemconres.2004.08.001
    [27]
    申文凯, 元强, 纪友红, 等. 剪切速率和温度对低水胶比水泥浆流变性能的影响[J]. 硅酸盐通报, 2023, 42(1): 48-56, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301004.htm

    SHEN Wenkai, YUAN Qiang, JI Youhong, et al. Effects of shear rate and temperature on rheology of cement paste with low water-to-binder ratio[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(1): 48-56, 65. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202301004.htm
    [28]
    张艳荣. 水泥—化学外加剂—水分散体系早期微结构与流变性[D]. 北京: 清华大学, 2014.

    ZHANG Yanrong. Study on The microstructure and rheological properties of cement-chemical admixtures-water dispersion system at early stage[D]. Beijing: Tsinghua University, 2014.
    [29]
    TIAN C J, WANG Y Z, WEI Y P, et al. Study on the rheological behaviour of UHPC considering the combination of temperature and mineral admixture[J]. Road Materials and Pavement Design, 2024, 25(2): 344-361. doi: 10.1080/14680629.2023.2207662
    [30]
    刘艳, 周梅, 张凯, 等. 基于RSM-BBD的自燃煤矸石骨料透水混凝土配比优化研究[J]. 矿业科学学报, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007

    LIU Yan, ZHOU Mei, ZHANG Kai, et al. The optimization of pervious concrete ratios with spontaneous combustion gangue aggregates based on the RSM-BBD method[J]. Journal of Mining Science and Technology, 2022, 7(5): 565-576. doi: 10.19606/j.cnki.jmst.2022.05.007
    [31]
    CHEN J S, CHANG M K, LIN K. Influence of coarse aggregate shape on the strength of asphalt concrete mixtures[J]. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6: 1062-1075.
    [32]
    郭海桥, 程伟, 尚志, 等. 水分和冻融循环对酷寒矿区煤矸石风化崩解速率影响的定量研究[J]. 煤炭学报, 2019, 44(12): 3859-3864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912028.htm

    GUO Haiqiao, CHENG Wei, SHANG Zhi, et al. Quantitative determination of the effect of moisture and freeze/thaw cycles on coal gaugue decay rate in severe cold mining areas[J]. Journal of China Coal Society, 2019, 44(12): 3859-3864. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201912028.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views (57) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return