Volume 9 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Fan, XV Bing, CHEN Lunjian, XING Baolin, SU Faqiang. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004
Citation: WANG Fan, XV Bing, CHEN Lunjian, XING Baolin, SU Faqiang. Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification[J]. Journal of Mining Science and Technology, 2024, 9(2): 167-177. doi: 10.19606/j.cnki.jmst.2024.02.004

Adsorption and seepage properties of permeable reaction barrier construction materials for underground coal gasification

doi: 10.19606/j.cnki.jmst.2024.02.004
  • Received Date: 2023-11-08
  • Rev Recd Date: 2024-01-12
  • Publish Date: 2024-04-30
  • Groundwater pollution induced by Underground Coal Gasification(UCG)seriously hinders its development.Permeable Reactive Barrier(PRB)remediation therefore stands out as a major research focus for in-situ groundwater remediation, where the characteristics of PRB material is crucial to their effective operation.This study thus examines the adsorption properties of sand, organic bentonite, and activated carbon on phenol, a characteristic organic pollutant associated with UCG.A self-constructed permeation experimental system is employed to study the adsorption and permeation characteristics of sand, organic bentonite, activated carbon, mixtures of sand and organic bentonite, as well as sand and activated carbon to investigate their comprehensive impact in purifying contaminated water.The results indicate that: ①Organic bentonite exhibits a rapid adsorption rate for phenol in solution, reaching adsorption equilibrium within 10 minutes, despite a relatively low adsorption capacity(1.98 mg/g). Activated carbon, on the other hand, demonstrates a slower adsorption rate yet a higher adsorption capacity(2.22 mg/g).②The adsorption of phenol by organic bentonite conforms to the Freundlich isotherm model, with parameters kF = 0.040 and n = 1.207.Activated carbon follows the Langmuir isotherm model, with parameters Smax = 2.44 mg/g and kL= 0.125 L/mg.③The permeability coefficients of sand and activated carbon are 1.006×10-3 m/s and 4.761×10-2 m/s, respectively.The mixture of sand with activated carbon or organic bentonite could effectively moderate the permeability of the mixed material.When the mass ratio of sand to organic bentonite increases from 1∶1 to 3∶1, the permeability coefficient of the mixed material increases from 2.624×10-6 to 3.468×10-5 m/s.Conversely, when the ratio of sand to activated carbon increases from 1∶1 to 3∶1, the permeability coefficient of the mixed material decreases from 1.379×10-3 to 1.301×10-4 m/s.
  • loading
  • [1]
    赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [2]
    刘淑琴, 畅志兵, 刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002

    LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in-situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002
    [3]
    张希, 冯悦峰, 李正斌, 等. 可渗透反应墙技术修复重金属污染地下水的发展与展望[J]. 离子交换与吸附, 2022, 38(3): 269-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LJYX202203007.htm

    ZHANG Xi, FENG Yuefeng, LI Zhengbing, et al. Developmentand prospect of permeable reactive barrier for remediation of heavy metalcontaminated groundwater[J]. Ion Exchange and Adsorption, 2022, 38(3): 269-283. https://www.cnki.com.cn/Article/CJFDTOTAL-LJYX202203007.htm
    [4]
    林达红, 徐文炘, 张静, 等. 不同介质材料组合可渗透反应墙渗透性能试验研究[J]. 矿产与地质, 2016, 30(2): 255-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602020.htm

    LIN Dahong, XU Wenxin, ZHANG Jing, et al. Permeability test of permeable reaction barrier of different medium and material combinations[J]. Mineral Resources and Geology, 2016, 30(2): 255-257. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201602020.htm
    [5]
    ALKIZWINI R S. The use of an organo-kaolinite sorbent in a permeable reactive barrier for remediating groundwater contaminated with methylene blue dye: experimental and theoretical investigation[J]. Environmental Processes, 2021, 8(2): 889-910. doi: 10.1007/s40710-021-00515-1
    [6]
    HAIDER S A A, FATLAWI S A, NASIR M J. Utilizing activated carbon developed from banana peels as permeable reactive barrier in copper removal from polluted groundwater[J]. Journal of Ecological Engineering, 2022, 23(1): 83-90. doi: 10.12911/22998993/143973
    [7]
    FAISAL A A H, ABDUL-KAREEM M B, MOHAMMED A K, et al. Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions[J]. Journal of Water Process Engineering, 2020, 36: 101373. doi: 10.1016/j.jwpe.2020.101373
    [8]
    ZENG Q, HUANG Y J, HUANG L M, et al. Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate[J]. Chemical Engineering Journal, 2020, 383: 123209. doi: 10.1016/j.cej.2019.123209
    [9]
    HUANG D D, WANG G C, SHI Z M, et al. Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system[J]. Journal of Cleaner Production, 2017, 165: 667-676. doi: 10.1016/j.jclepro.2017.07.152
    [10]
    YANG J, CAO L M, GUO R, et al. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2, 4-dichlorophenol in water[J]. Journal of Hazardous Materials, 2010, 184(1): 782-787.
    [11]
    徐建平, 万海洮. 利用活性炭处理酸性矿井废水研究[J]. 水处理技术, 2014, 40(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm

    XU Jianping, WAN Haitao. Study on the treatment of acid mine wastewater by activated carbon[J]. Technology of water treatment, 2014, 40(3): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201403017.htm
    [12]
    彭利群, 张澄博, 李洪艺, 等. 介质材料在可渗透反应墙中的应用进展[J]. 环境科学与管理, 2011, 36(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201110012.htm

    PENG Liqun, ZHANG Chengbo, LI Hongyi, et al. Application progress of reactive media materials in permeable reactive barrier[J]. Environmental Science and Management, 2011, 36(10): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201110012.htm
    [13]
    LIU S Q, LI J G, MEI M, et al. Groundwater pollution from underground coal gasification[J]. Journal of China University of Mining and Technology, 2007, 17(4): 467-472. doi: 10.1016/S1006-1266(07)60127-8
    [14]
    KAPUSTA K, STANCZYK K, WIATOWSKI M, et al. Environmental aspects of a field-scale underground coal gasification trial in a shallow coal seam at the Experimental Mine Barbara in Poland[J]. Fuel, 2013, 113: 196-208. doi: 10.1016/j.fuel.2013.05.015
    [15]
    张乐, 谌伦建, 邢宝林, 等. 烟煤地下气化半焦对模拟废水中苯酚的脱除[J]. 化工进展, 2015(10): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201510043.htm

    ZHANG Le, CHEN Lunjian, XING Baolin, et al. Removal of phenol from simulated wastewater by underground coal gasification semi-coke[J]. Chemical Industry and Engineering Progress, 2015(10): 3790-3794. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201510043.htm
    [16]
    MOKHAHLANE L S, GOMO M, VERMEULEN D. Temperature and electrical conductivity stratification in the underground coal gasification zone and surrounding aquifers at the Majuba pilot plant[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2018, 118(10): 1053-1058.
    [17]
    BEAR J. Dynamics of fluids in porous media[M]. New York: Dover Publications, 1988.
    [18]
    李敬杰, 蔡五田, 吕永高, 等. 中试尺度下连续式可渗透反应墙修复Cr(Ⅵ)污染地下水效果评估[J]. 环境工程, 2022, 40(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202202025.htm

    LI Jingjie, CAI Wutian, LÜ Yonggao, et al. Effective evaluation of Cr(Ⅵ)contaminated groundwater remediation by permeable reactive wall in pilot scale[J]. Environmental Engineering, 2022, 40(2): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202202025.htm
    [19]
    刁文钦, 宋健, 王琳, 等. 利用生物渗透性反应墙修复地下水Cr(Ⅵ)污染的数值模拟[J]. 中国环境科学, 2022, 42(7): 3234-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202207027.htm

    DIAO Wenqin, SONG Jian, WANG Lin, et al. Numerical simulation of groundwater remediation of hexavalent chromium contaminated site by the bio-permeable reactive barrier[J]. China Environmental Science, 2022, 42(7): 3234-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202207027.htm
    [20]
    罗兴申, 郑凯旋, 许芳铭, 等. 数值模拟减压集流式可渗透反应墙技术修复地下水[J]. 中国环境科学, 2021, 41(12): 5728-5735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202112029.htm

    LUO Xingshen, ZHENG Kaixuan, XU Fangming, et al. Numerical simulation for remediation of polluted ground water by a novel convergent flow permeable reactive barrier[J]. China Environmental Science, 2021, 41(12): 5728-5735. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202112029.htm
    [21]
    NAFTZ D L, MORRISON S J, DAVIS J A, et al. Handbook of groundwater remediation using permeable reactive barriers[M]. Amsterdam: Elsevier, 2003.
    [22]
    詹良通, 丁兆华, 谢世平, 等. 竖向阻隔墙中土工复合膨润土防水毯搭接区渗透系数测试与分析[J]. 岩土力学, 2021, 42(9): 2387-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109006.htm

    ZHAN Liangtong, DING Zhaohua, XIE Shiping, et al. Test and analysis of hydraulic conductivity of geosynthetic clay liners overlap in vertical barrier wall[J]. Rock and Soil Mechanics, 2021, 42(9): 2387-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202109006.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (44) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return