Volume 9 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Jinchang, LIU Gang, ZHANG Hui, WENG Xinlong, MA Chao, ZHANG Ru. Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003
Citation: WANG Jinchang, LIU Gang, ZHANG Hui, WENG Xinlong, MA Chao, ZHANG Ru. Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field[J]. Journal of Mining Science and Technology, 2024, 9(2): 156-166. doi: 10.19606/j.cnki.jmst.2024.02.003

Study on site selection of underground gasification in deep coal seam: a case study of J148 area in Dongsheng Gas Field

doi: 10.19606/j.cnki.jmst.2024.02.003
  • Received Date: 2023-11-17
  • Rev Recd Date: 2024-01-20
  • Publish Date: 2024-04-30
  • The feasibility of underground gasification of Yan 9 coal seam of the middle-lower Jurassic Yan ′an Formation in J148 area of Dongsheng gas field is systematically studied from the perspectives of geological structure, hydrogeology and coal gasification characteristics, and the prospects of carbon sequestration by using the pore layer, aquifer layer and tight gas layer in the deep coal gasification cavity are discussed.The results show that the coal seam of Yan 9 in this area is stable when the buried depth is 1 264~1 285 m and the dip angle is less than 1°.In the interior of the gasification target constituency, the structural faults are not developed, the joint cracks are not developed, there are occasional cracks but the section is fresh and closed, and the cavity of the coal seam after gasification has a good tightness, which has little influence on the construction and expansion of coal gasification furnace, and can meet the implementation of large-scale coal gasification projects.There is a continuous water barrier layer on the top and bottom of Yan 9 coal seam, which can prevent the influence of groundwater on the direct water filling of coal seam, and is conducive to the layout of underground gasifier.The thickness of the roof water-barrier layer is less than the height of the water-conducting fissure zone, there is a risk of indirect water filling through the roof aquifer, but the roof aquifer is a weak water-rich aquifer, and the risk of small water inflow is controllable.The thickness of the floor water barrier layer is greater than the safe thickness of the floor water barrier layer, which can effectively prevent the risk of direct water filling to the coal seam.In general, Yan 9 coal seam has moderate thickness, little waste, low ash, low sulfur, high calorific value non-stick coal, high coke reactivity, and has a good development prospect.In view of the large amount of CO2 emission from large-scale gasification mining of deep coal seam, the feasibility of CO2 safe geological storage by using coal seam burning and caving area, top and bottom aquifer and lower tight natural gas layer was discussed.The analysis shows that 60.8 % ~88.2 % of CO2 produced by coal seam gasification can be stored in the pore layer and the top and bottom aquifer in the gas-burning and air-burning zone of Yan 9 coal seam.Combined with the development of tight natural gas in the Upper Paleozoic of Dongsheng gas field, it is expected to achieve near-zero carbon emissions in the process of deep coal seam gasification mining by using CO2 generated by coal gasification for natural gas displacement and storage.
  • loading
  • [1]
    鄂尔多斯市人民政府. 鄂尔多斯投资指南—资源优势[EB/OL](2023.2.24). http://www.ordos.gov.cn/sq_127930/zsys/tzzn/202302/t20230224_3343676.html.
    [2]
    鄂尔多斯市能源局. 关于在鄂尔多斯市建设自治区(国家)级"能源博物馆"提案的答复[EB/OL]. (2023.1.16). http://nyj.ordos.gov.cn/xxgk1/fdzdgk/jytabl1/zxta/202301/t20230116_3328964.html.
    [3]
    秦勇, 易同生, 杨磊, 等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探, 2023, 51(7): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307002.htm

    QIN Yong, YI Tongsheng, YANG Lei, et al. Underground coal gasification field tests in China: history and prospects[J]. Coal Geology & Exploration, 2023, 51(7): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202307002.htm
    [4]
    刘淑琴, 畅志兵, 刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002

    LIU Shuqin, CHANG Zhibing, LIU Jinchang. Key technologies and prospect for in situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology, 2021, 6(3): 261-270. doi: 10.19606/j.cnki.jmst.2021.03.002
    [5]
    薛会, 张金川, 王毅, 等. 鄂北杭锦旗探区构造演化与油气关系[J]. 大地构造与成矿学, 2009, 33(2): 206-214. doi: 10.3969/j.issn.1001-1552.2009.02.003

    XUE Hui, ZHANG Jinchuan, WANG Yi, et al. Relationship between tectonic evolution and hydrocarbon in Hangjinqi Block of North Ordos Basin[J]. Geotectonica et Metallogenia, 2009, 33(2): 206-214. doi: 10.3969/j.issn.1001-1552.2009.02.003
    [6]
    徐恒艺. 鄂尔多斯盆地北部杭锦旗地区中生代构造特征与构造演化研究[D]. 北京: 中国石油大学(北京), 2018.

    XV Hengyi. Mesozoic structural characteristics and evolution in Hangjinqi Block, northern Ordos Basin[D]. Beijing: China University of Petroleum (Beijing), 2018.
    [7]
    刘海燕. 鄂尔多斯盆地北部杭锦旗地区地质构造特征及其铀成矿意义[D]. 西安: 西北大学, 2014.

    LIU Haiyan. Geological structural characteristics of Hangjinqi area in northern Ordos Basin and its uranium mineralization significance[D]. Xi'an: Northwest University, 2014.
    [8]
    陈谋. 鄂尔多斯盆地北部上古生界断裂对油气成藏条件的影响[D]. 东营: 中国石油大学(华东), 2019.

    CHEN Mou. Influence of upper Paleozoic faults on hydrocarbon accumulation conditions in northern Ordos Basin[D]. Dongying: China University of Petroleum (Huadong), 2019.
    [9]
    常兴浩, 孙晓, 杨明慧. 鄂尔多斯盆地杭锦旗地区构造单元划分新方案及地质意义[J]. 科学技术与工程, 2013, 13(30): 8892-8899. doi: 10.3969/j.issn.1671-1815.2013.30.006

    CHANG Xinghao, SUN Xiao, YANG Minghui. Dicussing on division scheme of sub-tectonic units in Hangjinqi area, Ordos basin and the geological significance[J]. Science Technology and Engineering, 2013, 13(30): 8892-8899. doi: 10.3969/j.issn.1671-1815.2013.30.006
    [10]
    贾超, 刘禧超, 郭维. 内蒙古鄂尔多斯地区延安组沉积环境分析[J]. 西部资源, 2021(5): 1-2, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202105001.htm

    JIA Chao, LIU Xichao, GUO Wei. Analysis of sedimentary environment of Yan'an formationin Ordos region, inner Mongolia[J]. Western Resources, 2021(5): 1-2, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-XBZY202105001.htm
    [11]
    张雪映, 剡鹏兵, 王贵. 鄂尔多斯盆地北部延安组沉积学特征与成矿潜力分析[J]. 铀矿地质, 2021, 37(2): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102004.htm

    ZHANG Xueying, YAN Pengbing, WANG Gui. Sedimentary characteristics and metallogenicpotential of Yan'an formation in the north of Ordos Basin[J]. Uranium Geology, 2021, 37(2): 171-181. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102004.htm
    [12]
    王东东. 鄂尔多斯盆地中侏罗世延安组层序—古地理与聚煤规律[D]. 北京: 中国矿业大学(北京), 2012.

    WANG Dongdong. Sequence-palaeogeography andcoal-accumulation of the Middle Jurassic Yan'an formation in Ordos Basin[D]. Beijing: China University of Mining & Technology-Beijing, 2012.
    [13]
    晋香兰, 张泓. 鄂尔多斯盆地侏罗系成煤系统[J]. 煤炭学报, 2014, 39(S1): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1033.htm

    JIN Xianglan, ZHANG Hong. Jurassic coal-forming system in Ordos Basin[J]. Journal of China Coal Society, 2014, 39(S1): 191-197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1033.htm
    [14]
    肖秀玲. 鄂尔多斯盆地侏罗纪煤岩特征研究[D]. 北京: 中国地质大学(北京), 2010.

    XIAO Xiuling. Study on the Characteristics of Jurassic Coal in Ordos Basin[D]. Beijing: China University of Geosciences(Beijing), 2010.
    [15]
    李文厚. 鄂尔多斯盆地侏罗系沉积体系和层序地层学研究[D]. 西安: 西北大学, 2007.

    LI Wenhou. Research on Sedimentary System and Squence Stratigraphy of the Jurassic in Ordos Basin[D]. Xi'an: Northwest Univerity, 2007.
    [16]
    董洁. 鄂尔多斯盆地侏罗系延安组聚煤规律与煤层气富集规律[D]. 青岛: 中国石油大学(华东), 2010.

    DONG Jie. The rule of the coal accumulation and coal-bed methane accumulation in Jurassic Yan'an formation of Ordos Basin[D]. Qingdao: China University of Petroleum (East China), 2010.
    [17]
    焦养泉, 王双明, 范立民, 等. 鄂尔多斯盆地侏罗纪含煤岩系地下水系统关键要素与格架模型[J]. 煤炭学报, 2020, 45(7): 2411-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007009.htm

    JIAO Yangquan, WANG Shuangming, FAN Limin, et al. Key elements and framework model of groundwater system in Jurassic coal measures of Ordos Basin[J]. Journal of China Coal Society, 2020, 45(7): 2411-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202007009.htm
    [18]
    张金华, 陈艳鹏, 张梦媛, 等. 水文地质条件与煤炭地下气化的相互影响[J]. 煤炭工程, 2021, 53(12): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202112028.htm

    ZHANG Jinhua, CHEN Yanpeng, ZHANG Mengyuan, et al. Interaction between hydrogeological conditions and underground coal gasification[J]. Coal Engineering, 2021, 53(12): 150-154. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ202112028.htm
    [19]
    刘淑琴, 师素珍, 冯国旭, 等. 煤炭地下气化地质选址原则与案例评价[J]. 煤炭学报, 2019, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm

    LIU Shuqin, SHI Suzhen, FENG Guoxu, et al. Geological site selection and evaluation for underground coal gasification[J]. Journal of China Coal Society, 2019, 44(8): 2531-2538. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908028.htm
    [20]
    孙蕊, 马高峰, 马国帅, 等. 贫瘦煤模拟海水催化热解特性的研究[J]. 矿业科学学报, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271

    SUN Rui, Ma Gaofeng, Ma Guoshuai, et al. Catalytic pyrolysis characteristics of simulated seawater in lean coal[J]. Journal of Mining Science and Technology, 2020, 5(1): 115-121. http://kykxxb.cumtb.edu.cn/article/id/271
    [21]
    赵明东, 董东林, 田康. 煤炭地下气化覆岩温度场和裂隙场变化机制模拟研究[J]. 矿业科学学报, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41

    ZHAO Mingdong, DONG Donglin, TIAN Kang. Change mechanism simulation study of the overlying strata temperature field and fracture field in UCG[J]. Journal of Mining Science and Technology, 2017, 2(1): 1-6. http://kykxxb.cumtb.edu.cn/article/id/41
    [22]
    王兴刚, 范谭广, 焦立新, 等. 三塘湖盆地煤炭地下气化地质评价与有利区域[J]. 新疆石油地质, 2023, 44(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303006.htm

    WANG Xinggang, FAN Tanguang, JIAO Lixin, et al. Geological evaluation and favorable areas of underground coal gasification in santanghu basin[J]. Xinjiang Petroleum Geology, 2023, 44(3): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202303006.htm
    [23]
    崔振东, 乔群, 刘大安, 等. CO2地质封存盖层岩石物性封闭能力评价[J], 工程地质学报, 2017, 25: 428-433. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001066.htm

    CUI Zhengdong, Qiao Qun, Liu Daan, et al. Evaluation On The Physical Sealing Capacity Of Caprocks In CO2 Sequestration Sites. [J]. Journal of Engineering Geology. 2017, 25: 428-433. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201710001066.htm
    [24]
    李天, 任大忠, 甯波, 等. 煤层孔隙结构多尺度联合表征及其对可动流体的影响[J]. 矿业科学学报, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013

    LI Tian, REN Dazhong, NING Bo, et al. Multi-scale joint characterization of coal seam pore structure and its influence on movable fluid[J]. Journal of Mining Science and Technology, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013
    [25]
    沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北京: 石油工业出版社, 2009.

    SHEN Pingping, LIAO Xinwei. Technology of carbon dioxide stored in geological media and enhanced oil recovery[M]. Beijing: Petroleum Industry Press, 2009.
    [26]
    沈平平. 油藏流体的PVT与相态[M]. 北京: 石油工业出版社, 2000.

    SHEN Pingping. PVT and phase behaviour of petroleum reservoir fluids[M]. Beijing: Petroleum Industry Press, 2000.
    [27]
    OLDENBURG C M, PRUESS K, BENSON S M. Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery[J]. Energy & Fuels, 2001, 15(2): 293-298.
    [28]
    TURTA A T, SIM S S K, SINGHAL A K, et al. Basic investigations on enhanced gas recovery by gas-gas displacement[J]. Journal of Canadian Petroleum Technology, 2008, 47(10): 39-44.
    [29]
    史云清, 贾英, 严谨, 等. 大牛地致密低渗气藏注CO2选区及数值模拟研究[C]. 2016年全国天然气学术年会论文集, 石油天然气工业. 银川: 中国石油学会天然气专业委员会, 2016: 569-581.

    SHI Yunqing, JIA Ying, YAN Jin, et al. Research on CO2 injection area selection and numerical simulation of tight low permeability gas reservoir in Daniudi[C]. Proceedings of 2016 National Natural Gas Academic Annual Conference, Oil and Gas Industry. Yinchuan: Natural Gas Committee of China Petroleum Society, 2016: 569-581.
    [30]
    史云清, 贾英, 潘伟义, 等. 低渗致密气藏注超临界CO2驱替机理[J]. 石油与天然气地质, 2017, 38(3): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703021.htm

    SHI Yunqing, JIA Ying, PAN Weiyi, et al. Mechanism of supercritical CO2 flooding in low-permeability tight gas reservoirs[J]. Oil & Gas Geology, 2017, 38(3): 610-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201703021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (41) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return