Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHOU Ziyi, CHEN Zuyun, LIU Lixin, ZHONG Fangquan, GUO Yumin, ZHANG Jimin, LUO Binglin, LAI Zhaoqi. Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system[J]. Journal of Mining Science and Technology, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009
Citation: ZHOU Ziyi, CHEN Zuyun, LIU Lixin, ZHONG Fangquan, GUO Yumin, ZHANG Jimin, LUO Binglin, LAI Zhaoqi. Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system[J]. Journal of Mining Science and Technology, 2024, 9(1): 88-97. doi: 10.19606/j.cnki.jmst.2024.01.009

Simulation of flow field in low-resistance Venturi vibrating wire grid dust removal system

doi: 10.19606/j.cnki.jmst.2024.01.009
  • Received Date: 2023-06-05
  • Rev Recd Date: 2023-07-30
  • Publish Date: 2024-02-29
  • The distribution of the flow field in the dust collector significantly affects its performance. The uniform distribution of the flow field is conducive to the dust reduction of the system, thus it requires the use of simulation software to simulate and analyze the flow field distribution of the dust removal system. This study used Fluent to simulate the flow field distribution of gaseous single-phase flow, gas-solid two-phase flow and gas-solid-liquid three-phase flow to investigate the effect of droplet particles on the flow field of the dust removal system, and the effect of droplet particles on the dust removal performance. Results show that the dust particles exerts minimal impact on the system flow field; the structure of the dust collector is found to be the major factor affecting the system flow field; the presence of droplets will increase the dust removal efficiency of the system; after the droplet particles are added, the dust movement disorder is enhanced, and the collision effect with the droplets is strengthened, which promotes the condensation of fine dust, improve the dust removal efficiency, but at the same time affects the stability of the system flow field and increases the resistance loss of the system.
  • loading
  • [1]
    王保存. 自激式除尘器捕集体形成过程及其动态特性[D]. 徐州: 中国矿业大学, 2016.

    WANG Baocun. The formation process and its dynamic characteristics of the self-excited dust collection[D]. Xuzhou: China University of Mining and Technology, 2016.
    [2]
    乔石. 脉冲电晕放电湿法复合除尘理论与实验研究[D]. 青岛: 青岛理工大学, 2018.

    QIAO Shi. Theoretical and experimental study on pulsed corona discharge wet compound precipitation[D]. Qingdao: Qingdao Tehcnology University, 2018.
    [3]
    邹明. 低阻文丘里振弦纤维栅水膜除尘器实验及机理研究[D]. 赣州: 江西理工大学, 2020.

    ZOU Ming. Experimental and mechanism study of low-resistance venturi water film dust collector with vibrating fiber grid[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.
    [4]
    张汉君. 静电除尘器内二维稳定浓度场的数值模拟[J]. 江西理工大学学报, 1990, 11(4): 23-30.

    ZHANG Hanjun. Numerical simulation of two-dimensional steady concentration field in an electrostatic precipitator[J]. Journal of Jiangxi University of Science and Technology, 1990, 11(4): 23-30.
    [5]
    沈恒根, 沈滨, 王红兵, 等. 惯性沉降空间含尘气流运动及其分级效率计算[J]. 西安建筑科技大学学报, 1996, 28(3): 237-240, 272.

    SHEN Henggen, SHEN Bin, WANG Hongbing, et al. On the air-flow of dust content and computation of fractional efficiency in the inertia settling space[J]. Journal of Xi'an University of Architecture & Technology, 1996, 28(3): 237-240, 272.
    [6]
    张彦婷, 高广德, 操波. FLUENT软件在我国环保设备领域中的应用[J]. 能源与环境, 2008(1): 83-85.

    ZHANG Yanting, GAO Guangde, CAO Bo. Application of FLUENT software in the field of environmental protection equipment in China[J]. Energy and Environment, 2008(1): 83-85.
    [7]
    张建卓, 祝天姿, 高猛, 等. 基于FLUENT的综掘面风幕集尘除尘系统数值模拟[J]. 微计算机信息, 2011, 27(7): 28-29, 5.

    ZHANG Jianzhuo, ZHU Tianzi, GAO Meng, et al. Numerical simulation of dust-collecting and dedusting system with air-curtain in fully mechanized excavation face based on fluent[J]. Microcomputer Information, 2011, 27(7): 28-29, 5.
    [8]
    黄浩凯. 异形纤维捕集细颗粒物的格子Boltzmann数值模拟[D]. 武汉: 华中科技大学, 2017.

    HUANG Haokai. Simulation of fine particles filtration process of noncircular fibers using lattice boltzmann method[D]. Wuhan: Huazhong University of Science and Technology, 2017.
    [9]
    徐青涛, 杨国华, 沈炜杰, 等. 双层滤料颗粒床高温除尘器气固两相流场数值模拟[J]. 宁波大学学报: 理工版, 2018, 31(3): 117-120.

    XU Qingtao, YANG Guohua, SHEN Weijie, et al. Numerical simulation of gas-solid two-phase flow field of high temperature with dual-layer granular bed filter[J]. Journal of Ningbo University: Natural Science & Engineering Edition, 2018, 31(3): 117-120.
    [10]
    郗元, 姜文文, 代岩, 等. 基于CFD的锥形散射器强化清灰特性数值模拟及优化[J]. 轻工机械, 2021, 39(1): 98-103.

    XI Yuan, JIANG Wenwen, DAI Yan, et al. Numerical simulation and optimal of conical diffuser for ash removal characteristics based on CFD[J]. Light Industry Machinery, 2021, 39(1): 98-103.
    [11]
    林光荣. 综掘压气水吸气喷雾降尘技术研究[D]. 镇江: 江苏大学, 2015.

    LIN Guangrong. Study on dust suppression technology of fully mechanized excavation compressed air water inhalation spray[D]. Zhenjiang: Jiangsu University, 2015.
    [12]
    SHAHEED R, MOHAMMADIAN A, GILDEH H K. A comparison of standard k-ε and realizable k-ε turbulence models in curved and confluent channels[J]. Environmental Fluid Mechanics, 2019, 19(2): 543-568.
    [13]
    马颖辉. 纳米颗粒射流抛光数值模拟及实验研究[D]. 北京: 北京林业大学, 2016.

    MA Yinghui. Numerical simulation and experimental study on jet polishing using nanoparticles[D]. Beijing: Beijing Forestry University, 2016.
    [14]
    叶宇衡. 颗粒层除尘装置的设计与实验[D]. 沈阳: 东北大学, 2014.

    YE Yuheng. Design and experiment of granular layer dust remover[D]. Shenyang: Northeastern University, 2014.
    [15]
    张留祥. 20万吨/年超细固硫灰过热蒸汽袋式除尘器研究[D]. 绵阳: 西南科技大学, 2014.

    ZHANG Liuxiang. Study on 200 000 tons/year ultra-fine desulfurization ash superheated steam bag filter[D]. Mianyang: Southwest University of Science and Technology, 2014.
    [16]
    刘智. 多孔介质复合腔体内流体流动及传热实验研究[D]. 济南: 山东建筑大学, 2014.

    LIU Zhi. The experimental study on heat transfer and natural convection in a complex cavity partially filled with porous medium[D]. Jinan: Shandong Jianzhu University, 2014.
    [17]
    程攀攀. 颗粒粉尘在通风管道内的运移规律研究[D]. 赣州: 江西理工大学, 2017.

    CHENG Panpan. The research of motion regularity of granular dust in the ventilation pipe[D]. Ganzhou: Jiangxi University of Science and Technology, 2017.
    [18]
    高宗杰. 喷雾荷电振弦纤维栅过滤除尘数值模拟研究[D]. 赣州: 江西理工大学, 2018.

    GAO Zongjie. Numerical simulation study on spray charged vibrating wire grid[D]. Ganzhou: Jiangxi University of Science and Technology, 2018.
    [19]
    杨昆. 井工三矿34201综采工作面粉尘防治技术研究[D]. 青岛: 山东科技大学, 2015.

    YANG Kun. Study on dust control technology in 34201 fully mechanized mining face of Jinggong No. 3 Mine[D]. Qingdao: Shandong University of Science and Technology, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (86) PDF downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return