Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
QI Xiaohan, WANG Pin, HOU Shuangrong, LIU Yang, ZHU Tongguang. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007
Citation: QI Xiaohan, WANG Pin, HOU Shuangrong, LIU Yang, ZHU Tongguang. Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers[J]. Journal of Mining Science and Technology, 2024, 9(1): 66-76. doi: 10.19606/j.cnki.jmst.2024.01.007

Study on the effect of penetration enhancement and energy change of coal samples pretreated with different microwave powers

doi: 10.19606/j.cnki.jmst.2024.01.007
  • Received Date: 2023-07-25
  • Rev Recd Date: 2023-09-01
  • Publish Date: 2024-02-29
  • In order to investigate permeability and destructive deformation energy evolution of the loaded coal body under different power microwaves, the high-pressure three-dimensional visual mechanics experimental equipment to carry out the triaxial compressive percolation experiments of the coal samples after microwave pretreatment with different power. Results show that the modulus of elasticity of coal samples after microwave treatment with different powers shows a decreasing and then increasing trend, while the peak stress and Poisson's ratio show a decreasing trend; the increase of microwave power leads to easier compact of coal samples, larger overall strain values of radial and body stress-strain curves, and significant expansion; the permeability of the coal samples increases as power rises, which is consistent with the logarithmic function fitting relationship; the increase of microwave power leads to decreasing total energy U and elastic energy Ue at the peak stress of different pretreated coal samples, and the ability of coal samples to accumulate elastic energy Ue in the elastic stage is weakened. When we compare 200 W and 600 W microwave pretreatment under the same irradiation time, it is found that the change of each energy was more significant in 400 W microwave pretreatment, and the coal samples have the smallest dissipated energy Ud as a proportion of total energy U, at 24%. The study could provide references for gas extraction in microwave fracturing coal seams.
  • loading
  • [1]
    李祥春, 张良, 李忠备, 等. 不同瓦斯压力下煤岩三轴加载时蠕变规律及模型[J]. 煤炭学报, 2018, 43(2): 473-482.

    LI Xiangchun, ZHANG Liang, LI Zhongbei, et al. Creep law and model of coal under triaxial loading at different gas pressures[J]. Journal of China Coal Society, 2018, 43(2): 473-482.
    [2]
    孟召平, 卢易新. 高煤阶煤样水力压裂前后应力-渗透率试验研究[J]. 煤炭科学技术, 2023, 51(1): 353-360.

    MENG Zhaoping, LU Yixin. Experimental study on stress-permeability of high rank coal samples before and after hydraulic fracturing[J]. Coal Science and Technology, 2023, 51(1): 353-360.
    [3]
    LI Q G, LING B Q, ZHAI C. The effect of pulse frequency on the fracture extension during hydraulic fracturing[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 296-303. doi: 10.1016/j.jngse.2014.08.019
    [4]
    张永将, 黄振飞, 季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术, 2021, 49(4): 133-141.

    ZHANG Yongjiang, HUANG Zhenfei, JI Fei. Prevention and control technology of coal-rock and gas dynamic disaster based on water jet slotting pressure relief[J]. Coal Science and Technology, 2021, 49(4): 133-141.
    [5]
    贾明魁, 李学臣, 郭艳飞, 等. 定向长钻孔超前预抽煤层瓦斯区域治理技术[J]. 煤矿安全, 2018, 49(12): 68-71.

    JIA Mingkui, LI Xuechen, GUO Yanfei, et al. Regional control technology for gas pre-drainage in coal seam by directional long borehole[J]. Safety in Coal Mines, 2018, 49(12): 68-71.
    [6]
    LI X S, SI K, HE T, et al. Dynamic effect of shaped charge blasting and its application in coal seam permeability enhancement[J]. ACS Omega, 2022, 7(29): 25353-25365. doi: 10.1021/acsomega.2c02329
    [7]
    王菁瑞, 赵耀江, 李雨成, 等. 液氮致裂时间对煤样力学性能、渗透性与致裂机理的影响[J]. 煤炭科学技术, 2023, 51(6): 101-110.

    WANG Jingrui, ZHAO Yaojiang, LI Yucheng, et al. Analysis of mechanical properties, permeability and fracturing mechanism of coal samples at different fracturing time of liquid nitrogen[J]. Coal Science and Technology, 2023, 51(6): 101-110.
    [8]
    ZHANG F. Research into the mechanism and application of liquid CO2 phase-transition fracturing in a coal seam to enhance permeability[J]. Sustainability, 2023, 15(4): 3308. doi: 10.3390/su15043308
    [9]
    CHEN H D, WANG Z F, CHEN X E, et al. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide[J]. Journal of CO2 Utilization, 2017, 19: 112-119. doi: 10.1016/j.jcou.2017.03.010
    [10]
    GUO H Y, LIU X L, XIA D P, et al. Biological permeability enhancement technology for coal reservoir[J]. Acta Geologica Sinica-English Edition, 2017, 91(5): 1938-1939. doi: 10.1111/1755-6724.13432
    [11]
    KINGMAN S W, ROWSON N A. Microwave treatment of minerals-a review[J]. Minerals Engineering, 1998, 11(11): 1081-1087. doi: 10.1016/S0892-6875(98)00094-6
    [12]
    王卫东, 杨虓, 孙远, 等. 微波场中褐煤水分脱除规律及影响因素分析[J]. 煤炭学报, 2014, 39(6): 1159-63.

    WANG Weidong, YANG Xiao, SUN Yuan, et al. Lignite dewatering rule and related influencing factors in the microwave field[J]. Journal of China Coal Society, 2014, 39(6): 1159-1163.
    [13]
    HONG Y D, LIN B Q, ZHU C J, et al. Effect of microwave irradiation on petrophysical characterization of coals[J]. Applied Thermal Engineering, 2016, 102: 1109-1125. doi: 10.1016/j.applthermaleng.2016.04.019
    [14]
    HONG Y D, LIN B Q, XIANG H A, et al. Variable pore structure and gas permeability of coal cores after microwave irradiation[J]. Geofluids, 2018, 2018: 1-13.
    [15]
    胡国忠, 王春博, 许家林, 等. 微波辐射降低硬煤冲击倾向性试验研究[J]. 煤炭学报, 2021, 46(2): 450-465.

    HU Guozhong, WANG Chunbo, XU Jialin, et al. Experimental investigation on decreasing burst tendency of hard coal using microwave irradiation[J]. Journal of China Coal Society, 2021, 46(2): 450-465.
    [16]
    单鹏飞, 杨攀, 来兴平, 等. 微波-水交互作用下富油煤岩渐进性破坏规律试验[J]. 岩石力学与工程学报, 2023, 42: 1-13.

    SHAN Pengfei, YANG Pan, LAI Xingping, et al. Experiment on progressive failure law of tar-rich coal under microwave-water interaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42: 1-13.
    [17]
    KUMAR H, LESTER E, KINGMAN S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82. doi: 10.1016/j.coal.2011.07.007
    [18]
    李贺, 林柏泉, 洪溢都, 等. 微波辐射下煤体孔裂隙结构演化特性[J]. 中国矿业大学学报, 2017, 46(6): 1194-1201.

    LI He, LIN Baiquan, HONG Yidu, et al. Effect of microwave irradiation on pore and fracture evolutions of coal[J]. Journal of China University of Mining & Technology, 2017, 46(6): 1194-1201.
    [19]
    李贺. 微波辐射下煤体热力响应及其流-固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.

    LI He. Thermodynamical response of coal and the hydraulic-mechanical coupling mechanism under microwave irradiation[D]. Xuzhou: China University of Mining and Technology, 2018.
    [20]
    LI H, SHI S L, LIN B Q, et al. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals[J]. Energy, 2019, 187: 1-14.
    [21]
    LI H, SHI S L, LU J X, et al. Pore structure and multifractal analysis of coal subjected to microwave heating[J]. Powder Technology, 2019, 346: 97-108. doi: 10.1016/j.powtec.2019.02.009
    [22]
    MA Y L, CHENG Y, SHANG W L, et al. Experimental study on coal permeability variation during microwave radiation[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-18.
    [23]
    胡国忠, 杨南, 朱健, 等. 微波辐射下含水分煤体孔渗特性及表面裂隙演化特征实验研究[J]. 煤炭学报, 2020, 45(S2): 813-822.

    HU Guozhong, YANG Nan, ZHU Jian, et al. Evolution characteristics of microwave irradiation on pore-permeability and surface cracks of coal with water: an experimental study[J]. Journal of China Coal Society, 2020, 45(S2): 813-822.
    [24]
    曹轩. 微波热循环作用对含水煤体的致裂增透特性研究[D]. 徐州: 中国矿业大学, 2021.

    CAO Xuan. Study on fracturing and permeability enhancement of water bearing coals under microwave thermal cycling[D]. Xuzhou: China University of Mining & Technology, 2021.
    [25]
    林柏泉, 钟玉婷, 曹轩, 等. 循环微波辐射下煤体孔裂隙结构演化特征[J]. 西安科技大学学报, 2021, 41(6): 964-972.

    LIN Baiquan, ZHONG Yuting, CAO Xuan, et al. Effect of cyclic microwave irradiation on pore and fracture evolutions of coal[J]. Journal of Xi'an University of Science and Technology, 2021, 41(6): 964-972.
    [26]
    JEBELLI A, MAHABADI A, AHMAD R. Design and implementation of a coalbed methane extraction device using microwave radiation[J]. Geology, 2021.
    [27]
    袁曦, 张军伟. 分阶段卸载条件下突出煤变形特征与渗流特性[J]. 煤炭学报, 2017, 42(6): 1451-1457.

    YUAN Xi, ZHANG Junwei. Deformation and permeability characteristic of outburst coal under step unloading conditions[J]. Journal of China Coal Society, 2017, 42(6): 1451-1457.
    [28]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010.

    XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010.
    [29]
    康向涛, 黄滚, 宋真龙, 等. 三轴压缩下含瓦斯煤的能耗与渗流特性研究[J]. 岩土力学, 2015, 36(3): 762-768.

    KANG Xiangtao, HUANG Gun, SONG Zhenlong, et al. Research on characteristics of energy dissipation and seepage of coal containing gas under triaxial compression[J]. Rock and Soil Mechanics, 2015, 36(3): 762-768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (107) PDF downloads(45) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return