Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
XIE Beijing, LI Xiaoxu, LUAN Zheng, CHEN Siyu, CHEN Mingjin, LIANG Tianyu. Study on the dynamic fracture characteristics of red sandstone composite under stress waves[J]. Journal of Mining Science and Technology, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005
Citation: XIE Beijing, LI Xiaoxu, LUAN Zheng, CHEN Siyu, CHEN Mingjin, LIANG Tianyu. Study on the dynamic fracture characteristics of red sandstone composite under stress waves[J]. Journal of Mining Science and Technology, 2024, 9(1): 42-52. doi: 10.19606/j.cnki.jmst.2024.01.005

Study on the dynamic fracture characteristics of red sandstone composite under stress waves

doi: 10.19606/j.cnki.jmst.2024.01.005
  • Received Date: 2023-07-03
  • Rev Recd Date: 2023-11-01
  • Publish Date: 2024-02-29
  • To investigate the composite dynamic fracture characteristics of red sandstone under the action of stress waves, the impact loading experiment was carried out by using separated Hopkinson press bar, digital image technology and on the three-point bending specimen of semicircular disc with prefabricated cracks, to analyse the effects of loading rate and wavelength on the dynamic tensile and fracture characteristics of red sandstone. The results show that: ①the loading rate of red sandstone specimens has a primary function relationship with the dynamic tensile strength, fracture toughness and damage rate; the fracture energy increases by 415.27 % with the increase of loading rate. ②With the increase of wavelength, the dynamic tensile strength increased by 742.14 %, of which the fracture energy increased by 54.49 %, but the energy absorption rate showed a decreasing trend; the average speed of crack expansion increased by 4.09 %, and there is a hysteresis phenomenon in the time of strain growth of the first and last cracks; the effect of growth of the damage rate was strengthened. ③The strain at the first and last monitoring points of the main crack of the specimen increased by 84.31 % on average when the impact velocity was 8m/s.
  • loading
  • [1]
    MODIRIASARI A, BOBET A, PYRAK-NOLTE L J. Active seismic monitoring of crack initiation, propagation, and coalescence in rock[J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2311-2325. doi: 10.1007/s00603-017-1235-x
    [2]
    GONG S. Investigation of tensile and fracture mechanical properties of bituminous coal at different strain rates[J]. Journal of Materials Research and Technology, 2021, 15: 834-845. doi: 10.1016/j.jmrt.2021.08.076
    [3]
    LI J C, YUAN W, LI H B, et al. Study on dynamic shear deformation behaviors and test methodology of sawtooth-shaped rock joints under impact load[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 158: 105210. doi: 10.1016/j.ijrmms.2022.105210
    [4]
    张盛, 王启智. 用变裂缝单一尺寸试样确定大理岩的断裂韧度[J]. 工程力学, 2007, 24(6): 31-35.

    ZHANG Sheng, WANG Qizhi. Determination of marble fracture toughness by using variable-crack one-size specimens[J]. Engineering Mechanics, 2007, 24(6): 31-35.
    [5]
    张盛, 王启智, 梁亚磊. 裂缝长度对岩石动态断裂韧度测试值影响的研究[J]. 岩石力学与工程学报, 2009, 28(8): 1691-1696.

    ZHANG Sheng, WANG Qizhi, LIANG Yalei. Research on influence of crack length on test values of rock dynamic fracture toughness[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1691-1696.
    [6]
    宋义敏, 何爱军, 王泽军, 等. 冲击载荷作用下岩石动态断裂试验研究[J]. 岩土力学, 2015, 36(4): 965-970.

    SONG Yimin, HE Aijun, WANG Zejun, et al. Experiment study of the dynamic fractures of rock under impact loading[J]. Rock and Soil Mechanics, 2015, 36(4): 965-970.
    [7]
    宋义敏, 杨小彬, 杨晟萱, 等. 冲击载荷下岩石裂纹动态断裂参数研究[J]. 采矿与安全工程学报, 2015, 32(5): 834-839.

    SONG Yimin, YANG Xiaobin, YANG Shengxuan, et al. The research of rock dynamic fracture parameter under the action of impact load[J]. Journal of Mining & Safety Engineering, 2015, 32(5): 834-839.
    [8]
    李地元, 刘濛, 韩震宇, 等. 含孔洞层状砂岩动态压缩力学特性试验研究[J]. 煤炭学报, 2019, 44(5): 1349-1358.

    LI Diyuan, LIU Meng, HAN Zhenyu, et al. Dynamic compressive mechanical properties of bedding sandstone with pre-existing hole[J]. Journal of China Coal Society, 2019, 44(5): 1349-1358.
    [9]
    龚爽, 赵毅鑫, 周磊, 等. 冲击荷载作用下含双孔洞裂纹石灰岩动态断裂行为[J]. 煤炭学报, 2023, 48(8): 3030-3047.

    GONG Shuang, ZHAO Yixin, ZHOU Lei, et al. Dynamic fracture behavior of limestone specimens containing double holes and crack under impact loading[J]. Journal of China Coal Society, 2023, 48(8): 3030-3047.
    [10]
    DAI F, CHEN R, XIA K. A semi-circular bend technique for determining dynamic fracture toughness[J]. Experimental Mechanics, 2010, 50(6): 783-791. doi: 10.1007/s11340-009-9273-2
    [11]
    DAI F, XIA K, ZHENG H, et al. Determination of dynamic rock Mode-Ⅰ fracture parameters using cracked chevron notched semi-circular bend specimen[J]. Engineering Fracture Mechanics, 2011, 78(15): 2633-2644. doi: 10.1016/j.engfracmech.2011.06.022
    [12]
    DAI F, XIA K W. Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 57-65. doi: 10.1016/j.ijrmms.2012.12.035
    [13]
    LI Y, YANG S Q, LI Y. Experiment and numerical simulation on cracking behavior of marble containing double elliptic holes under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics, 2021, 112: 102928. doi: 10.1016/j.tafmec.2021.102928
    [14]
    武宇, 刘殿书, 吴帅峰, 等. 砂岩冲击损伤与应力波参数关系试验研究[J]. 矿业科学学报, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142

    WU Yu, LIU Dianshu, WU Shuaifeng, et al. Experimental study on relationship between impact damage of sandstone and stress wave parameters[J]. Journal of Mining Science and Technology, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142
    [15]
    李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究[J]. 矿业科学学报, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003

    LI Chengxiao, ZHANG Yuantong, AN Chen. Study on the dynamic propagation and numerical simulation of mode Ⅰ and mixed mode Ⅰ-Ⅱ cracks in PMMA specimens with unilateral semicircular holes[J]. Journal of Mining Science and Technology, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003
    [16]
    KURUPPU M D, OBARA Y, AYATOLLAHI M R, et al. ISRM-suggested method for determining the mode Ⅰ static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 267-274. doi: 10.1007/s00603-013-0422-7
    [17]
    解北京, 栾铮, 陈冬新, 等. 不同长径比煤样动力学特征及本构模型[J]. 矿业科学学报, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006

    XIE Beijing, LUAN Zheng, CHEN Dongxin, et al. Dynamic characteristics and constitutive model of coal samples with different length diameter ratio[J]. Journal of Mining Science and Technology, 2023, 8(2): 190-201. doi: 10.19606/j.cnki.jmst.2023.02.006
    [18]
    解北京, 栾铮, 刘天乐, 等. 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报, 2023, 48(5): 2153-2167.

    XIE Beijing, LUAN Zheng, LIU Tianle, et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society, 2023, 48(5): 2153-2167.
    [19]
    王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.

    WANG Lili. Stress wave foundation[M]. Beijing: National Defense Industry Press, 1985.
    [20]
    尹土兵. 考虑温度效应的岩石动力学行为研究[D]. 长沙: 中南大学, 2012.

    YIN Tubing. Study on dynamic behavior of rocks considering thermai, effect[D]. Changsha: Central South University, 2012.
    [21]
    凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    LING Tianlong, LIU Dianshu, LIANG Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [22]
    平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401-407.

    PING Qi, MA Qinyong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401-407.
    [23]
    XIA K W, YAO W. Dynamic rock tests using split Hopkinson(Kolsky) bar system—A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27-59. doi: 10.1016/j.jrmge.2014.07.008
    [24]
    KURUPPU M D, CHONG K P. Fracture toughness testing of brittle materials using semi-circular bend(SCB) specimen[J]. Engineering Fracture Mechanics, 2012, 91: 133-150. doi: 10.1016/j.engfracmech.2012.01.013
    [25]
    骆浩浩, 张渊通, 左进京, 等. 冲击荷载下运动裂纹与空孔相互作用的焦散线试验研究[J]. 矿业科学学报, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008

    LUO Haohao, ZHANG Yuantong, ZUO Jinjing, et al. Caustics experimental study on the interaction between moving cracks and voids under impact loading[J]. Journal of Mining Science and Technology, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008
    [26]
    AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670. doi: 10.1016/j.commatsci.2006.04.008
    [27]
    AYATOLLAHI M R, ALIHA M R M. Fracture toughness study for a brittle rock subjected to mixed mode Ⅰ/Ⅱ loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 617-624. doi: 10.1016/j.ijrmms.2006.10.001
    [28]
    解北京, 于瑞星, 陈冬新, 等. 动载下石灰岩能耗指标影响因素研究[J]. 中国安全生产科学技术, 2022, 18(11): 62-70.

    XIE Beijing, YU Ruixing, CHEN Dongxin, et al. Study on influencing factors of energy consumption index of limestone under dynamic load[J]. Journal of Safety Science and Technology, 2022, 18(11): 62-70.
    [29]
    杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    YANG Guoliang, BI Jingjiu, ZHANG Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [30]
    陈骏, 张祥, 赵康朴, 等. 初始应力状态对侧限条件黏土动态压缩过程和力学性能的影响[J]. 工程科学与技术, 2023, 55(3): 69-76.

    CHEN Jun, ZHANG Xiang, ZHAO Kangpu, et al. Effect of initial stress state on dynamic compression process and mechanical properties of clay under lateral restriction conditions[J]. Advanced Engineering Sciences, 2023, 55(3): 69-76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)

    Article Metrics

    Article views (152) PDF downloads(68) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return