Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHAO Yang, HOU Yukun, TANG Tiewu. Evaluation index of bursting liability of coal based on energy transfer efficiency[J]. Journal of Mining Science and Technology, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003
Citation: ZHAO Yang, HOU Yukun, TANG Tiewu. Evaluation index of bursting liability of coal based on energy transfer efficiency[J]. Journal of Mining Science and Technology, 2024, 9(1): 22-31. doi: 10.19606/j.cnki.jmst.2024.01.003

Evaluation index of bursting liability of coal based on energy transfer efficiency

doi: 10.19606/j.cnki.jmst.2024.01.003
  • Received Date: 2023-08-01
  • Rev Recd Date: 2023-09-27
  • Publish Date: 2024-02-29
  • The accumulation and release of energy in coal are closely linked to rock burst, with energy transfer being a key parameter for evaluating bursting liability. This study constructs an energy transfer model under energy source disturbance conditions, where we establish a relationship between impact energy index and elastic energy index, propose the proportion of energy φ, introduce the concept of energy transfer efficiency β based on an energy dissipation model during the transfer process, develop an evaluation method for bursting liability by multiplying two efficiency parameters η=βφ. We conducted experiments to identify bursting liability of 11 coal layers from 3 pairs of coal mines, whose reliability was verified by referencing results from 79 layered impact tendency identifications in other coal mines. Results show that 1)the proportion of energy release φ has boundary conditions with physical significance for ground pressure; 2)there is negative correlation between the efficiency β and Poisson's ratio which can model boundary conditions; 3)calculation results of the energy transfer index η show high consistency(88.61 %)with bursting liability identification results, reflecting the bursting liability of coal bodies. It can serve as a basis for evaluating "*" outcomes and is an effective indicator suitable for existing systems used to evaluate bursting liability.
  • loading
  • [1]
    齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年: 理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(9): 1-40.

    QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9): 1-40.
    [2]
    齐庆新, 陈尚本, 王怀新, 等. 冲击地压、岩爆、矿震的关系及其数值模拟研究[J]. 岩石力学与工程学报, 2003, 22(11): 1852-1858.

    QI Qingxin, CHEN Shangben, WANG Huaixin, et al. Study on the relations among coal bump, rockburst and mining tremor with numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1852-1858.
    [3]
    潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003, 22(11): 1844-1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan, LI Zhonghua, ZHANG Mengtao. Distribution, type, mechanism and prevention of rockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1844-1851. doi: 10.3321/j.issn:1000-6915.2003.11.019
    [4]
    钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6.

    QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6.
    [5]
    NEWMAN C, NEWMAN D. Numerical analysis for the prediction of bump prone conditions: a southern Appalachian pillar coal bump case study[J]. International Journal of Mining Science and Technology, 2021, 31(1): 75-81. doi: 10.1016/j.ijmst.2020.12.020
    [6]
    ZHOU K Y, DOU L M, LI X W, et al. Coal burst and mining-induced stress evolution in a deep isolated main entry area—A case study[J]. Engineering Failure Analysis, 2022, 137: 106289. doi: 10.1016/j.engfailanal.2022.106289
    [7]
    LAWSON H, WEAKLEY A, MILLER A. Dynamic failure in coal seams: implications of coal composition for bump susceptibility[J]. International Journal of Mining Science and Technology, 2016, 26(1): 3-8. doi: 10.1016/j.ijmst.2015.11.002
    [8]
    JAVADI M, SAEEDI G, SHAHRIAR K. Evaluation of coal bump risk during underground mining: a case study of tabas coal mine[J]. Journal of Failure Analysis and Prevention, 2018, 18(6): 1503-1515. doi: 10.1007/s11668-018-0547-9
    [9]
    李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8): 1545-1553.

    LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553.
    [10]
    王恩元, 冯俊军, 张奇明, 等. 冲击地压应力波作用机理[J]. 煤炭学报, 2020, 45(1): 100-110.

    WANG Enyuan, FENG Junjun, ZHANG Qiming, et al. Mechanism of rockburst under stress wave in mining space[J]. Journal of China Coal Society, 2020, 45(1): 100-110.
    [11]
    谭云亮, 郭伟耀, 赵同彬, 等. 深部煤巷帮部失稳诱冲机理及"卸-固"协同控制研究[J]. 煤炭学报, 2020, 45(1): 66-81.

    TAN Yunliang, GUO Weiyao, ZHAO Tongbin, et al. Coal rib burst mechanism in deep roadway and "stress relief-support reinforcement" synergetic control and prevention[J]. Journal of China Coal Society, 2020, 45(1): 66-81.
    [12]
    JIANG Y D, ZHAO Y X, WANG H W, et al. A review of mechanism and prevention technologies of coal bumps in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 180-194. doi: 10.1016/j.jrmge.2016.05.008
    [13]
    DOU L M, MU Z L, LI Z L, et al. Research progress of monitoring, forecasting, and prevention of rockburst in underground coal mining in China[J]. International Journal of Coal Science & Technology, 2014, 1(3): 278-288.
    [14]
    谭云亮, 郭伟耀, 辛恒奇, 等. 煤矿深部开采冲击地压监测解危关键技术研究[J]. 煤炭学报, 2019, 44(1): 160-172.

    TAN Yunliang, GUO Weiyao, XIN Hengqi, et al. Key technology of rock burst monitoring and control in deep coal mining[J]. Journal of China Coal Society, 2019, 44(1): 160-172.
    [15]
    齐庆新, 潘一山, 舒龙勇, 等. 煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J]. 煤炭学报, 2018, 43(7): 1801-1810.

    QI Qingxin, PAN Yishan, SHU Longyong, et al. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines[J]. Journal of China Coal Society, 2018, 43(7): 1801-1810.
    [16]
    宫凤强, 赵英杰, 王云亮, 等. 煤的冲击倾向性研究进展及冲击地压"人-煤-环"三要素机理[J]. 煤炭学报, 2022, 47(5): 1974-2010.

    GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst "Human-Coal-Environment" three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5): 1974-2010.
    [17]
    卢志国, 鞠文君, 高富强, 等. 基于非线性储能与释放特征的煤冲击倾向性指标[J]. 岩石力学与工程学报, 2021, 40(8): 1559-1569.

    LU Zhiguo, JU Wenjun, GAO Fuqiang, et al. Bursting liability index of coal based on nonlinear storage and release characteristics of elastic energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8): 1559-1569.
    [18]
    吴学明, 王苏健, 张天军, 等. 煤层冲击倾向性评价的新指标体系[J]. 西安科技大学学报, 2019, 39(5): 782-789.

    WU Xueming, WANG Sujian, ZHANG Tianjun, et al. New index of coal seam impact tendencies[J]. Journal of Xi'an University of Science and Technology, 2019, 39(5): 782-789.
    [19]
    蔡武, 窦林名, 韩荣军, 等. 基于损伤统计本构模型的煤层冲击倾向性研究[J]. 煤炭学报, 2011, 36(S2): 346-352.

    CAI Wu, DOU Linming, Han Rongjun, et al. Bursting liability of coal based on damage statistical constitutive model[J]. Journal of China Coal Society, 2011, 36(S2): 346-352.
    [20]
    郭建卿, 苏承东. 不同煤试样冲击倾向性试验结果分析[J]. 煤炭学报, 2009, 34(7): 897-902.

    GUO Jianqing, SU Chengdong. Analysis on experimental results of rock burst tendency of different coal samples[J]. Journal of China Coal Society, 2009, 34(7): 897-902.
    [21]
    潘一山, 耿琳, 李忠华. 煤层冲击倾向性与危险性评价指标研究[J]. 煤炭学报, 2010, 35(12): 1975-1978.

    PAN Yishan, GENG Lin, LI Zhonghua. Research on evaluation indices for impact tendency and danger of coal seam[J]. Journal of China Coal Society, 2010, 35(12): 1975-1978.
    [22]
    祝捷, 姜耀东, 赵毅鑫, 等. 改进的Lippmann煤层平动突出模型[J]. 煤炭学报, 2007, 32(4): 353-357.

    ZHU Jie, JIANG Yaodong, ZHAO Yixin, et al. The improved Lippmann's translatory model of coal bumps[J]. Journal of China Coal Society, 2007, 32(4): 353-357.
    [23]
    张月征, 纪洪广, 侯昭飞. 基于莫尔-库伦强度理论的岩石冲击危险性判据[J]. 金属矿山, 2014(11): 138-142.

    ZHANG Yuezheng, JI Hongguang, HOU Zhaofei. Instability criterion of rockburst risk based on mohr-coulomb strength theory[J]. Metal Mine, 2014(11): 138-142.
    [24]
    左建平, 陈岩, 崔凡. 不同煤岩组合体力学特性差异及冲击倾向性分析[J]. 中国矿业大学学报, 2018, 47(1): 81-87.

    ZUO Jianping, CHEN Yan, CUI Fan. Investigation on mechanical properties and rock burst tendency of different coal-rock combined bodies[J]. Journal of China University of Mining & Technology, 2018, 47(1): 81-87.
    [25]
    邓志刚. 动静载作用下煤岩多场耦合冲击危险性动态评价技术[J]. 煤炭科学技术, 2021, 49(4): 121-132.

    DENG Zhigang. Multi-field coupling dynamic evaluation method of rockburst hazard considering dynamic and static load[J]. Coal Science and Technology, 2021, 49(4): 121-132.
    [26]
    宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993-2014.

    GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014.
    [27]
    赵毅鑫, 谢镕澴, 高艺瑞. 煤冲击倾向性的针贯入法测定[J]. 煤炭学报, 2023, 48(5): 1932-1942.

    ZHAO Yixin, XIE Ronghuan, GAO Yirui. Coal bursting tendency evaluation by needle penetration test[J]. Journal of China Coal Society, 2023, 48(5): 1932-1942.
    [28]
    马念杰, 张文龙, 李军, 等. 冲击地压机理要素分析与评价[J]. 矿业科学学报, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003

    MA Nianjie, ZHANG Wenlong, LI Jun, et al. Analysis and evaluation of essential factors for rock burst mechanism[J]. Journal of Mining Science and Technology, 2021, 6(6): 651-658. doi: 10.19606/j.cnki.jmst.2021.06.003
    [29]
    王博楠, 谷拴成, 李军. 基于能量计算的预掘回撤通道顶板下沉量分析[J]. 矿业科学学报, 2023, 8(5): 623-632. doi: 10.19606/j.cnki.jmst.2023.05.004

    WANG Bonan, GU Shuancheng, LI Jun. Analysis on roof sag of pre-driven recovery room based on energy calculation[J]. Journal of Mining Science and Technology, 2023, 8(5): 623-632. doi: 10.19606/j.cnki.jmst.2023.05.004
    [30]
    袁亮. 煤矿典型动力灾害风险判识及监控预警技术"十三五"研究进展[J]. 矿业科学学报, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001

    YUAN Liang. Risk identification, monitoring and early warning of typical coal mine dynamic disasters during the 13th Five-Year Plan period[J]. Journal of Mining Science and Technology, 2021, 6(1): 1-8. doi: 10.19606/j.cnki.jmst.2021.01.001
    [31]
    齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1-5.

    QI Qingxin, OUYANG Zhenhua, ZHAO Shankun, et al. Study on types of rock burst mine and prevention methods in China[J]. Coal Science and Technology, 2014, 42(10): 1-5.
    [32]
    宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 2021, 29(4): 933-961.

    GONG Fengqiang, PAN Junfeng, JIANG Quan. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 2021, 29(4): 933-961.
    [33]
    齐庆新, 李一哲, 李海涛, 等. 冲击地压应力流思想及其控制理论初探[J]. 采矿与安全工程学报, 2021, 38(5): 866-875.

    QI Qingxin, LI Yizhe, LI Haitao, et al. Preliminary theoretical study on stress flow thought for coal bump and its control[J]. Journal of Mining & Safety Engineering, 2021, 38(5): 866-875.
    [34]
    齐庆新, 王守光, 李海涛, 等. 冲击地压应力流理论及其数值实现[J]. 煤炭学报, 2022, 47(1): 172-179.

    QI Qingxin, WANG Shouguang, LI Haitao, et al. Stress flow theory for coal bump and its numerical implementation[J]. Journal of China Coal Society, 2022, 47(1): 172-179.
    [35]
    赵善坤, 苏振国, 侯煜坤, 等. 采动巷道矿压显现特征及力构协同防控技术研究[J]. 煤炭科学技术, 2021, 49(6): 61-71.

    ZHAO Shankun, SU Zhenguo, HOU Yukun, et al. Study on mine pressure characteristics and force-structure cooperative prevention and control on mining roadway with deep thick hard roof[J]. Coal Science and Technology, 2021, 49(6): 61-71.
    [36]
    赵善坤. 深孔顶板预裂爆破力构协同防冲机理及工程实践[J]. 煤炭学报, 2021, 46(11): 3419-3432.

    ZHAO Shankun. Mechanism and application of force-structure cooperative prevention and control on rockburst with deep hole roof pre-blasting[J]. Journal of China Coal Society, 2021, 46(11): 3419-3432.
    [37]
    JIANG J J, ZHANG Y, DENG Z G, et al. Experimental study on mechanical behavior and energy evolution characteristics of gas-filled deep coal under cyclic loading[J]. Processes, 2023, 11(2): 316. doi: 10.3390/pr11020316
    [38]
    王凯, 赵恩彪, 郭阳阳, 等. 中间主应力影响下含瓦斯复合煤岩体变形渗流及能量演化特征研究[J]. 矿业科学学报, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007

    WANG Kai, ZHAO Enbiao, GUO Yangyang, et al. Deformation, seepage and energy evolution characteristics of gas-bearing coal-rock under intermediate principal stress[J]. Journal of Mining Science and Technology, 2023, 8(1): 74-82. doi: 10.19606/j.cnki.jmst.2023.01.007
    [39]
    谢和平, 周宏伟, 薛东杰, 等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012, 37(4): 535-542.

    XIE Heping, ZHOU Hongwei, XUE Dongjie, et al. Research and consideration on deep coal mining and critical mining depth[J]. Journal of China Coal Society, 2012, 37(4): 535-542.
    [40]
    谢和平, 高峰, 鞠杨, 等. 深部开采的定量界定与分析[J]. 煤炭学报, 2015, 40(1): 1-10.

    XIE Heping, GAO Feng, JU Yang, et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society, 2015, 40(1): 1-10.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (192) PDF downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return