Volume 9 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
SUN Hongfu, YIN Xiangcheng, SUN Lang, ZHAO Fenghua, ZHU Menghao, FAN Ziyi. Comparative study on evaluation methods of accurate acid production potential of coal gangue[J]. Journal of Mining Science and Technology, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002
Citation: SUN Hongfu, YIN Xiangcheng, SUN Lang, ZHAO Fenghua, ZHU Menghao, FAN Ziyi. Comparative study on evaluation methods of accurate acid production potential of coal gangue[J]. Journal of Mining Science and Technology, 2024, 9(1): 13-21. doi: 10.19606/j.cnki.jmst.2024.01.002

Comparative study on evaluation methods of accurate acid production potential of coal gangue

doi: 10.19606/j.cnki.jmst.2024.01.002
  • Received Date: 2023-07-04
  • Rev Recd Date: 2023-10-10
  • Publish Date: 2024-02-29
  • In order to prevent major acid drainage pollution accidents, this study aims to improve the accuracy of acid production potential evaluation of mine rocks in the prediction of acid drainage. Specifically, this paper introduced existing calculation methods of acid-producing potential, and then determined the acid-producing mineral contents in some sulfur minerals and coal gangue samples by three-step sequential extraction method, which is then compared with the traditional method of calculating the maximum acid-producing potential by measuring total sulfur. Results show that: 1) the acid-producing potential of coal gangue is dependent on the mass percentage content of each acid-producing sulfur and the corresponding unit acid value; 2) except for sample SC, the acid-producing potential calculated by acid-producing sulfur content is lower than(with different degrees) the acid-producing potential predicted by total sulfur. The sulfur in the sample SC is mainly arsenopyrite sulfur, which has a higher acid value per unit than pyrite sulfur, resulting in a higher acid potential calculated by SC sample than predicted by total sulfur; 3) the three-step sequential extraction is suitable for samples with iron and copper sulfides as the main sulfur minerals; 4) when other sulfide components increase and blank samples are unevenly mixed, the results will be disturbed to some extent. This research provides evidences to justify the evaluation of accurate acid production potential of coal gangue in mining area.
  • loading
  • [1]
    赵峰华, 孙红福, 刘乃利. 煤系岩石产酸潜力的索氏淋滤实验评价[J]. 中国矿业大学学报, 2013, 42(2): 214-220.

    ZHAO Fenghua, SUN Hongfu, LIU Naili. Evaluation of Soxhlet leaching experiment of acid-producing potential of rock from coal-bearing measures[J]. Journal of China University of Mining & Technology, 2013, 42(2): 214-220.
    [2]
    王晨昇, 姜大伟, 胡格吉乐吐, 等. 矿山酸性废水预测评价方法[J]. 矿产勘查, 2019, 10(3): 690-694.

    WANG Chensheng, JIANG Dawei, HU Gejiletu, et al. An overview of the methods of acid mine drainage prediction and evaluation[J]. Mineral Exploration, 2019, 10(3): 690-694.
    [3]
    赵峰华, 孙红福, 刘乃利, 等. 含煤岩系岩石静态产酸潜力综合评价[J]. 地球科学, 2014, 39(3): 350-356.

    ZHAO Fenghua, SUN Hongfu, LIU Naili, et al. Evaluation of static acid production potential for coal bearing formation[J]. Earth Science, 2014, 39(3): 350-356.
    [4]
    国家质量监督检验检疫总局、中国国家标准化管理委员会. 煤中全硫的测定方法: GB/T 214—2007[S]. 北京: 中国标准出版社, 2008.
    [5]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铜矿石、铅矿石和锌矿石化学分析方法第12部分: 硫量测定: GB/T 14353.12—2010[S]. 北京: 中国标准出版社, 2011.
    [6]
    国家质量监督检验检疫总局. 煤中各种形态硫的测定方法: GB/T 215—2003[S]. 北京: 中国标准出版社, 2003.
    [7]
    李薇薇. 湖南辰溪特高有机硫煤的地球化学特征与硫的成因[D]. 北京: 中国矿业大学(北京), 2013.

    LI Weiwei. Geochemistry of super-high-organic-sulfur coals from Chenxi, Hunan and geological origin of the sulfur[D]. China University of Mining and Technology(Beijing), 2013: 2.
    [8]
    TUTTLE M, BRIGGS P, BERRY C J. A method to separate phases of sulphur in mine-waste piles and natural alteration zones, and to use sulphur isotopic compositions to investigate release of metals and acidity to the environment[C]. Cairns, Australia: 6th International Conference on Acid Rock Drainage, 2003.
    [9]
    SCHUMANN R, STEWART W, MILLER S, et al. Acid-base accounting assessment of mine wastes using the chromium reducible sulfur method[J]. Science of the Total Environment, 2012, 424: 289-296. doi: 10.1016/j.scitotenv.2012.02.010
    [10]
    BURTON E D, SULLIVAN L A, BUSH R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008, 23(9): 2759-2766. doi: 10.1016/j.apgeochem.2008.07.007
    [11]
    STEWART W, SCHUMAN R, MILLER S, et al. Development of prediction methods for ARD assessment of coal process wastes[C]. Skelleftea, Sweden: 8th International Conference on Acid Rock Drainage, 2009.
    [12]
    TUTTLE M L, GOLDHABER M B, WILLIAMSON D L. An analytical scheme for determining forms of sulphur in oil shales and associated rocks[J]. Talanta, 1986, 33(12): 953-961. doi: 10.1016/0039-9140(86)80234-X
    [13]
    ÇELEBI E E, RIBEIRO J. Prediction of acid production potential of self-combusted coal mining wastes from Douro Coalfield(Portugal) with integration of mineralogical and chemical data[J]. International Journal of Coal Geology, 2023, 265: 104152.
    [14]
    MOYO A, DO AMARAL FILHO J R, HARRISON S T L, et al. Implications of sulfur speciation on the assessment of acid rock drainage generating potential: a study of South African coal processing wastes[J]. Minerals, 2019, 9(12): 776. doi: 10.3390/min9120776
    [15]
    LI J, SMART R S, SCHUMANN R C, et al. A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes[J]. The Science of the Total Environment, 2007, 373(1): 391-403. doi: 10.1016/j.scitotenv.2006.11.012
    [16]
    WILLIAM A. Prediction manual for drainage chemistry from sulphidic geologic materials[M]. Canada: Nature Resources Canada, 2009.
    [17]
    曹丽娜, 陈炳辉. 不同环境下AMD的次生矿物及其意义[C]//. 2018第四届能源, 环境与地球科学国际会议论文集. 西安:

    ICEEES, 2018: 64-71.
    [18]
    DOLD B. Acid rock drainage prediction: a critical review[J]. Journal of Geochemical Exploration, 2017, 172: 120-132. doi: 10.1016/j.gexplo.2016.09.014
    [19]
    钟晶洁, 石桂金, 赵晓龙. 红外法与库仑滴定法测定煤中全硫探讨[J]. 山东化工, 2016, 45(19): 62-63, 65.

    ZHONG Jingjie, SHI Guijin, ZHAO Xiaolong. Discussion on determination of total sulfur in coal by infrared method and coulometric titration[J]. Shandong Chemical Industry, 2016, 45(19): 62-63, 65.
    [20]
    陈鹏, 徐晓阳, 何如榕. 热解硫光化学法检测煤中有机硫类型[J]. 煤炭科学技术, 1997, 25(1): 14-17, 59.

    CHEN Peng, XU Xiaoyang, HE Rurong. Pyrolysis sulfur optical chemical method applied to measure organic sulfur type in coal[J]. Coal Science and Technology, 1997, 25(1): 14-17, 59.
    [21]
    张明旭, 栗元龙. 程控升温燃烧法快速测定煤中硫的形态和数量[J]. 中国矿业大学学报, 2001, 30(6): 617-619.

    ZHANG Mingxu, LI Yuanlong. Fast determination of sulphur forms and quantity in coal using program-controlled temperature-increasing[J]. Journal of China University of Mining & Technology, 2001, 30(6): 617-619.
    [22]
    刘华, 谢灵芝, 李健. 测定煤中不同形态硫应注意的几个问题[J]. 内蒙古煤炭经济, 2010(4): 111-113.

    LIU Hua, XIE Lingzhi, LI Jian. Several problems to be paid attention to in the determination of different forms of sulfur in coal[J]. Inner Mongolia Coal Economy, 2010(4): 111-113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(8)

    Article Metrics

    Article views (158) PDF downloads(75) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return