Volume 8 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Zhang Hanpeng, Ren Dazhong, Zhang Rongjun, Qu Le, Li Tian, Li Qihui. Microscopic distribution of fluid in Sulige tight sandstone gas reservoir and its influencing factors[J]. Journal of Mining Science and Technology, 2023, 8(6): 744-757. doi: 10.19606/j.cnki.jmst.2023.06.002
Citation: Zhang Hanpeng, Ren Dazhong, Zhang Rongjun, Qu Le, Li Tian, Li Qihui. Microscopic distribution of fluid in Sulige tight sandstone gas reservoir and its influencing factors[J]. Journal of Mining Science and Technology, 2023, 8(6): 744-757. doi: 10.19606/j.cnki.jmst.2023.06.002

Microscopic distribution of fluid in Sulige tight sandstone gas reservoir and its influencing factors

doi: 10.19606/j.cnki.jmst.2023.06.002
  • Received Date: 2023-03-17
  • Rev Recd Date: 2023-04-04
  • Publish Date: 2023-12-31
  • The Lower Shihezi Formation in the eastern part of Sulige gas field has high water content, where the exploitation of tight sandstone gas reservoir is considerably affected by the characteristics of fluid occurrence. Specifically, this study analyzed the porosity, permeability, lithology, pore throat heterogeneity and connectivity and their effects on fluid occurrenceby rock and ore identification, porosity and permeability analysis and NMR centrifugation. Results show that: ①the tight sandstone reservoir in the study area shows poor pore flow capacity, and bound water saturation. The flow capacity is closely related to the gas flow pressure difference (centrifugal force). ②Intercalations play a key role in controlling flow capacity. Abundant kaolinite content indicates that the reservoir has better connectivity, larger pore size and stronger overall pore water flow capacity. Illite has a strong water-holding capacity, which could easily cause capillary obstruction and limited flow capacity. ③The gas flow pressure difference (centrifugal force)is exponentially related to the pore diameter of reservoir pore water flow. ④The critical pore throat radius of the effective reservoir space is 0.089μm, and the mobile water saturation is 23.95% in Xiashihezi Formation in the eastern part of Sulige gas field.
  • loading
  • [1]
    邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm

    Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
    [2]
    朱华银, 徐轩, 安来志, 等. 致密气藏孔隙水赋存状态与流动性实验[J]. 石油学报, 2016, 37(2): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602009.htm

    Zhu Huayin, Xu Xuan, An Laizhi, et al. An experimental on occurrence and mobility of pore water in tight gas reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2): 230-236. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201602009.htm
    [3]
    贾爱林, 唐海发, 韩永新, 等. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm

    Jia Ailin, Tang Haifa, Han Yongxin, et al. The distribution of gas and water and development strategy for deep-buried gasfield in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(6): 908-918. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201906014.htm
    [4]
    许文平, 吴朝东, 关平, 等. 柴达木盆地第四系疏松砂岩天然气储层可动水预测方法研究[J]. 天然气地球科学, 2012, 23(5): 952-955. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201205023.htm

    Xu Wenping, Wu Chaodong, Guan Ping, et al. Prediction of free water in the unconsolidated sandstone reservoir in the quaternary gas field, Qaidam basin[J]. Natural Gas Geoscience, 2012, 23(5): 952-955. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201205023.htm
    [5]
    徐轩, 万玉金, 陈颖莉, 等. 裂缝性边水气藏水侵机理及治水对策实验[J]. 天然气地球科学, 2019, 30(10): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201910015.htm

    Xu Xuan, Wan Yujin, Chen Yingli, et al. Physical simulation of water invasion and water control for the fractured water-bearing gas reservoirs[J]. Natural Gas Geoscience, 2019, 30(10): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201910015.htm
    [6]
    胡勇, 李熙喆, 李跃刚, 等. 低渗致密砂岩气藏提高采收率实验研究[J]. 天然气地球科学, 2015, 26(11): 2142-2148. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511016.htm

    Hu Yong, Li Xizhe, Li Yuegang, et al. Enhanced gas recovery of the low permeability and tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2015, 26(11): 2142-2148. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201511016.htm
    [7]
    谭晓华, 彭港珍, 李晓平, 等. 考虑水封气影响的有水气藏物质平衡法及非均匀水侵模式划分[J]. 天然气工业, 2021, 41(3): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103014.htm

    Tan Xiaohua, Peng Gangzhen, Li Xiaoping, et al. Material balance method and classification of non-uniform water invasion mode for gas reservoirs with water considering the effect of water sealed gas[J]. Natural Gas Industry, 2021, 41(3): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103014.htm
    [8]
    朱海勇, 高景滨. 含水饱和度和衰竭速度对凝析气藏油气采收率的影响[J]. 石油化工应用, 2014, 33(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201401006.htm

    Zhu Haiyong, Gao Jingbin. Speed of condensate water saturation and failure the influence of the gas reservoir recovery efficiency of oil and gas[J]. Petrochemical Industry Application, 2014, 33(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH201401006.htm
    [9]
    游利军, 李雷, 康毅力, 等. 考虑有效应力与含水饱和度的致密砂岩气层供气能力[J]. 天然气地球科学, 2012, 23(4): 764-769. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204021.htm

    You Lijun, Li Lei, Kang Yili, et al. Gas supply capacity of tight sandstone in considering effective stress and water saturation[J]. Natural Gas Geoscience, 2012, 23(4): 764-769. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201204021.htm
    [10]
    黄兴, 李天太, 王香增, 等. 致密砂岩储层可动流体分布特征及影响因素: 以鄂尔多斯盆地姬塬油田延长组长8油层组为例[J]. 石油学报, 2019, 40(5): 557-567. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm

    Huang Xing, Li Tiantai, Wang Xiangzeng, et al. Distribution characteristics and its influence factors of movable fluid in tight sandstone reservoir: a case study from Chang-8 oil layer of Yanchang Formation in Jiyuan oilfield, Ordos Basin[J]. Acta Petrolei Sinica, 2019, 40(5): 557-567. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201905005.htm
    [11]
    时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析: 以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5): 827-834, 850. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm

    Shi Jianchao, Qu Xuefeng, Lei Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoir: a case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5): 827-834, 850. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605009.htm
    [12]
    任大忠, 周兆华, 梁睿翔, 等. 致密砂岩气藏黏土矿物特征及其对储层性质的影响: 以鄂尔多斯盆地苏里格气田为例[J]. 岩性油气藏, 2019, 31(4): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904005.htm

    Ren Dazhong, Zhou Zhaohua, Liang Ruixiang, et al. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: a case from Sulige Gas Field, Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(4): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201904005.htm
    [13]
    黄海, 任大忠, 周妍, 等. 华庆地区长81储层可动流体赋存特征及孔隙度演化[J]. 西北大学学报: 自然科学版, 2016, 46(5): 735-745. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201605020.htm

    Huang Hai, Ren Dazhong, Zhou Yan, et al. Characteristics of movable fluid and pore evolution of the Chang 81 sandstone reservoirs of the Ordos Basin[J]. Journal of Northwest University: Natural Science Edition, 2016, 46(5): 735-745. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201605020.htm
    [14]
    孙军昌, 杨正明, 唐立根, 等. 致密气藏束缚水分布规律及含气饱和度研究[J]. 深圳大学学报: 理工版, 2011, 28(5): 377-383. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201105002.htm

    Sun Junchang, Yang Zhengming, Tang Ligen, et al. Study on distribution law of irreducible water andgas saturation of tight sandstone gas reservoir[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(5): 377-383. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201105002.htm
    [15]
    欧阳伟平, 孙贺东, 韩红旭. 致密气藏水平井多段体积压裂复杂裂缝网络试井解释新模型[J]. 天然气工业, 2020, 40(3): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003015.htm

    Ouyang Weiping, Sun Hedong, Han Hongxu. A new well test interpretation model for complex fracture networks in horizontal wells with multi-stage volume fracturing in tight gas reservoirs[J]. Natural Gas Industry, 2020, 40(3): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202003015.htm
    [16]
    Daigle H, Johnson A. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory[J]. Transport in Porous Media, 2016, 111(3): 669-679.
    [17]
    Ren D Z, Yang F, Li R X, et al. Insight into the pore structures and its impacts on movable fluid in tight sandstones[J]. Geofluids, 2020. DOI: 10.1155/2020/8820203.
    [18]
    Liu D K, Sun W, Ren D Z. Experimental investigation of pore structure and movable fluid traits in tight sandstone[J]. Processes, 2019, 7(3): 149.
    [19]
    Dong F J, Cao Y A, Ren D Z, et al. Micro-fracture development impact factors analysis and its effects on well production of Hua-qing area Ordos Basin in China[J]. International Journal of Oil, Gas and Coal Technology, 2019, 21(1): 39.
    [20]
    Shanley K W, Cluff R M, Robinson J W. Factors controlling prolific gas production from low-permeability sandstone reservoirs: implications for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin, 2004, 88(8): 1083-1121.
    [21]
    赵岳, 王延斌, 钟大康, 等. 致密砂岩储集层成岩演化与致密油充注成藏关系研究: 以鄂尔多斯盆地延长组为例[J]. 矿业科学学报, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128

    Zhao Yue, Wang Yanbin, Zhong Dakang, et al. Study on the relationship between tight sandstone reservoir diagenetic evolution and hydrocarbon reservoirs filling: a case from the Yanchang Formation, Ordos Basin[J]. Journal of Mining Science and Technology, 2018, 3(2): 106-118. http://kykxxb.cumtb.edu.cn/article/id/128
    [22]
    李天, 任大忠, 甯波, 等. 煤层孔隙结构多尺度联合表征及其对可动流体的影响[J]. 矿业科学学报, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013

    Li Tian, Ren Dazhong, Ning Bo, et al. Multi-scale joint characterization of coal seam pore structure and its influence on movable fluid[J]. Journal of Mining Science and Technology, 2023, 8(4): 569-582. doi: 10.19606/j.cnki.jmst.2023.04.013
    [23]
    Spain D, Merletti G, Webster M, et al. The importance of saturation history for tight gas deliverability[C]. SPE Middle East Unconventional Gas Conference and Exhibition. Muscat, Oman, 2013: 28-30.
    [24]
    Assiri W J, Miskimins J. The water blockage effect on desiccated tight gas reservoir[C]. SPE International Symposium and Exhibition on Formation Damage Control. OnePetro, 2014.
    [25]
    Jiang L, Zhou R H, Li G. Accumulation characteristics of tight sandstone gas reservoirs in the Upper Paleozoic in the Shenfu block of the Ordos Basin[J]. IOP Conference Series: Earth and Environmental Science, 2021, 768(1): 012022.
    [26]
    Zhao Y L, Liu X Y, Zhang L H, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry B, 2021, 8(2): 195-204.
    [27]
    Li A F, Tian W B, Ren X X, et al. Investigations of water saturation and fractal characteristics in tight sandstone gas reservoirs using centrifugation and NMR experiments[J]. International Journal of Oil, Gas and Coal Technology, 2021, 26(4): 405.
    [28]
    Zhang J E, Li X Z, Shen W J, et al. Study of the effect of movable water saturation on gas production in tight sandstone gas reservoirs[J]. Energies, 2020, 13(18): 4645.
    [29]
    赵毅鑫, 曹宝, 张通. 轴压和渗透压对破碎岩石渗透率影响的试验研究[J]. 矿业科学学报, 2018, 3(5): 434-441. http://kykxxb.cumtb.edu.cn/article/id/169

    Zhao Yixin, Cao Bao, Zhang Tong. Experimental study on influences of permeability of axial pressures and penetrative pressures on broken rocks[J]. Journal of Mining Science and Technology, 2018, 3(5): 434-441. http://kykxxb.cumtb.edu.cn/article/id/169
    [30]
    Wang F J, Liu Y K, Zhi J Q, et al. Micro-nano pore throat structure and occurrence characteristics of tight sandstone gas: a case study in the Ordos Basin, China[J]. International Journal of Oil, Gas and Coal Technology, 2020, 25(3): 237.
    [31]
    李飞, 程久龙, 陈绍杰, 等. 基于时移高密度电法的覆岩精细探测方法研究[J]. 矿业科学学报, 2019, 4(1): 1-7. http://kykxxb.cumtb.edu.cn/article/id/115

    Li Fei, Cheng Jiulong, Chen Shaojie, et al. Fine detection of overburden strata based on time lapse high density resistivity method[J]. Journal of Mining Science and Technology, 2019, 4(1): 1-7. http://kykxxb.cumtb.edu.cn/article/id/115
    [32]
    薛黎明, 朱琳龙, 王豪杰, 等. 基于漂移度-未确知测度模型的煤层注水效果评价[J]. 矿业科学学报, 2019, 4(1): 41-49. http://kykxxb.cumtb.edu.cn/article/id/195

    Xue Liming, Zhu Linlong, Wang Haojie, et al. Evaluation of the effect of water infusion of coal seams based on drifting degree and uncertainty measurement model[J]. Journal of Mining Science and Technology, 2019, 4(1): 41-49. http://kykxxb.cumtb.edu.cn/article/id/195
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (172) PDF downloads(66) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return