Volume 8 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Xue Dongjie, Hou Mengdong, Cheng Jianchao, Jia Zhen, Liu Yintong, Xin Cui, Xu Yanzhuo, Wang Lujun. Fractal model of shear-induced rough fracture flow by cross-scale description of its geometry[J]. Journal of Mining Science and Technology, 2023, 8(5): 663-676. doi: 10.19606/j.cnki.jmst.2023.05.008
Citation: Xue Dongjie, Hou Mengdong, Cheng Jianchao, Jia Zhen, Liu Yintong, Xin Cui, Xu Yanzhuo, Wang Lujun. Fractal model of shear-induced rough fracture flow by cross-scale description of its geometry[J]. Journal of Mining Science and Technology, 2023, 8(5): 663-676. doi: 10.19606/j.cnki.jmst.2023.05.008

Fractal model of shear-induced rough fracture flow by cross-scale description of its geometry

doi: 10.19606/j.cnki.jmst.2023.05.008
  • Received Date: 2023-02-19
  • Rev Recd Date: 2023-05-17
  • Publish Date: 2023-10-31
  • The Beishan area in Gansu province is the main pre-selected site for deep geological disposal of high-level radioactive waste, it therefore bears implications for the study of fracture seepage characteristics of granite caused by shear failure. This paper investigated the fractal modeling of the geometric and seepage characteristics of granite fracture sections under shear conditions, with the aim to explore the effect of the geometric characteristics of multi-scale rough fractures on the evolution of nonlinear seepage field in Beishan granite. Results show that the roughness height and aperture of rough fractures have complete self-similarity in the process of model scale change, whose distribution are always consistent in the process of spatial scale change. The seepage velocity field, gradient field and divergence field only demonstrate the continuation of local characteristics, in particular, the corresponding quantity fields at different scales are subject to normal distribution. As the observation scale increases, the spatial fluctuation in the field gradually decreases, the sharp mutations in the three fields gradually disappear and are smoothed. This indicates that the larger the observation scale, the greater the probability that the seepage of rough fracture is misjudged as the seepage of parallel plate, therefore the seepage characteristics of rough section would be more accurately described by taking the geometric scale into account.
  • loading
  • [1]
    薛东杰, 周宏伟, 任伟光, 等. 北山花岗岩深部节理间距分布多重分形研究[J]. 岩土力学, 2016, 37(10): 2937-2944. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610027.htm

    Xue Dongjie, Zhou Hongwei, Ren Weiguang, et al. Multi-fractal characteristics of joint geometric distribution of granite in Beishan[J]. Rock and Soil Mechanics, 2016, 37(10): 2937-2944. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201610027.htm
    [2]
    王超圣, 周宏伟, 裴浩, 等. 甘肃北山地区花岗岩破坏过程能量聚集和耗散特征研究[J]. 矿业科学学报, 2018, 3(6): 536-542. http://kykxxb.cumtb.edu.cn/article/id/182

    Wang Chaosheng, Zhou Hongwei, Pei Hao, et al. Study on energy concentration and dissipation of Beishan granite in Gansu during failure process[J]. Journal of Mining Science and Technology, 2018, 3(6): 536-542. http://kykxxb.cumtb.edu.cn/article/id/182
    [3]
    Huang D, Li Y R. Conversion of strain energy in Triaxial Unloading Tests on Marble[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 160-168. doi: 10.1016/j.ijrmms.2013.12.001
    [4]
    李守巨, 刘迎曦, 冯文文, 等. 岩体裂隙中渗流场有限元随机模拟分析[J]. 岩土力学, 2009, 30(7): 2119-2125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907051.htm

    Li Shouju, Liu Yingxi, Feng Wenwen, et al. Randomly numerical simulation of water flow field in fractured rock mass with finite element method[J]. Rock and Soil Mechanics, 2009, 30(7): 2119-2125. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907051.htm
    [5]
    Zimmerman R W, Bodvarsson G S. Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23(1): 1-30.
    [6]
    Sisavath S, Al-Yaaruby A, Pain C C, et al. A simple model for deviations from the cubic law for a fracture undergoing dilation or closure[J]. Pure and Applied Geophysics, 2003, 160(5): 1009-1022.
    [7]
    Koyama T, Neretnieks I, Jing L. A numerical study on differences in using Navier-Stokes and Reynolds equations for modeling the fluid flow and particle transport in single rock fractures with shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1082-1101. doi: 10.1016/j.ijrmms.2007.11.006
    [8]
    Yeo I W, Ge S M. Applicable range of the Reynolds equation for fluid flow in a rock fracture[J]. Geosciences Journal, 2005, 9(4): 347-352. doi: 10.1007/BF02910323
    [9]
    Zhang Q, Luo S H, Ma H C, et al. Simulation on the water flow affected by the shape and density of roughness elements in a single rough fracture[J]. Journal of Hydrology, 2019, 573: 456-468. doi: 10.1016/j.jhydrol.2019.03.069
    [10]
    朱红光, 谢和平, 易成, 等. 破断岩体裂隙的流体流动特性分析[J]. 岩石力学与工程学报, 2013, 32(4): 657-663. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304003.htm

    Zhu Hongguang, Xie Heping, Yi Cheng, et al. Analysis of properties of fluid flow in rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 657-663. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304003.htm
    [11]
    Xu R N, Jiang P X. Numerical simulation of fluid flow in microporous media[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 1447-1455. doi: 10.1016/j.ijheatfluidflow.2008.05.005
    [12]
    Wang L C, Cardenas M B, Slottke D T, et al. Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness[J]. Water Resources Research, 2015, 51(4): 2064-2080. doi: 10.1002/2014WR015815
    [13]
    Xue D J, Zhang Z P, Chen C, et al. Spatial correlation-based characterization of acoustic emission signal-cloud in a granite sample by a cube clustering approach[J]. International Journal of Mining Science and Technology, 2021, 31(4): 535-551. doi: 10.1016/j.ijmst.2021.05.008
    [14]
    Xue D J, Lu L L, Zhou J, et al. Cluster modeling of the short-range correlation of acoustically emitted scattering signals[J]. International Journal of Coal Science & Technology, 2021, 8(4): 575-589.
    [15]
    Xiong F, Wei W, Xu C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446.
    [16]
    Koyama T, Fardin N, Jing L, et al. Numerical simulation of shear-induced flow anisotropy and scale-dependent aperture and transmissivity evolution of rock fracture replicas[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(1): 89-106.
    [17]
    孙洪泉, 谢和平. 岩石断裂表面的分形模拟[J]. 岩土力学, 2008, 29(2): 347-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802019.htm

    Sun Hongquan, Xie Heping. Fractal simulation of rock fracture surface[J]. Rock and Soil Mechanics, 2008, 29(2): 347-352. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802019.htm
    [18]
    刘殷彤. 正交剪切条件下裂隙渗流分形建模研究[D]. 北京: 中国矿业大学(北京), 2020.
    [19]
    周宏伟, 谢和平, Kwasniewski M A. 粗糙表面分维计算的立方体覆盖法[J]. 摩擦学学报, 2000, 20(6): 455-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX200006012.htm

    Zhou Hongwei, Xie Heping, Kwasniewski M A. Fractal dimension of rough surface estimated by the cubic covering method[J]. Tribology, 2000, 20(6): 455-459. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX200006012.htm
    [20]
    Chen Y D, Liang W G, Lian H J, et al. Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 98: 121-140.
    [21]
    Zou L C, Jing L R, Cvetkovic V. Shear-enhanced nonlinear flow in rough-walled rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 97: 33-45.
    [22]
    Xue D J, Liu Y T, Zhou H W, et al. Fractal characterization on anisotropy and fractal reconstruction of rough surface of granite under orthogonal shear[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1225-1242.
    [23]
    Zhang Q G, Ju Y, Gong W B, et al. Numerical simulations of seepage flow in rough single rock fractures[J]. Petroleum, 2015, 1(3): 200-205.
    [24]
    Chen S J. Fracture and seepage characteristics in the floor strata when mining above a confined aquifer[J]. Journal of China University of Mining and Technology, 2012, 41(4): 536-542.
    [25]
    Ter Braak C J F, Prentice I C. A theory of gradient analysis[M]. Amsterdam: Elsevier, 1988: 271-317.
    [26]
    刘荣道. 场论中的梯度、散度、旋度和两个重要的积分公式[J]. 湖北大学成人教育学院学报, 2002, 20(1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HDAJ200201018.htm

    Liu Rongdao. Gradient, divergence, curl and two important integral formulas in field theory[J]. Journal of Adult Education College of Hubei University, 2002, 20(1): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HDAJ200201018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(2)

    Article Metrics

    Article views (123) PDF downloads(43) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return