Volume 8 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Li Dongbo, Li Guangzhou, Liu Qinlong, Lu Wei. Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006
Citation: Li Dongbo, Li Guangzhou, Liu Qinlong, Lu Wei. Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation[J]. Journal of Mining Science and Technology, 2023, 8(3): 329-338. doi: 10.19606/j.cnki.jmst.2023.03.006

Mechanisms of hydration inhibition on the surface of montmorillonite in deep shale via molecular dynamic simulation

doi: 10.19606/j.cnki.jmst.2023.03.006
  • Received Date: 2022-09-26
  • Rev Recd Date: 2022-11-28
  • Publish Date: 2023-06-30
  • Borehole instability is one of the most complicated technical problems in oil and gas exploration and development.The hydration and expansion of clay minerals is the critical factor causing wellbore instability in which the surface hydration is difficult to be removed due to the large hydration potential.In this light, through molecular dynamic simulation, this paper probed into the CaCl2 inhibitory effect of concentrations, temperatures and pressures on the surface hydration of montmorillonite which revealed the macroscopic mechanism.Results indicated that inhibition of cations were achieved by binding water molecules on the surface of montmorillonite and decreasing the transport and conductivity of water molecules, thereby regulating the invasion of water molecules into the surface of montmorillonite.The ability of inorganic salts to inhibit surface hydration were CaCl2>NaCl>MgCl2>KCl.The study found that calcium ions easily adsorbed surface water molecules to form stable outer sphere complex.With the increase of CaCl2 concentration, coordination number, hydration number and hydration radius of calcium ion decreased, and the inhibitory effect diminished.When the temperature increased and the pressure decreased, the conductivity and transport capacity of water molecules was enhanced in the system, the coordination number of calcium ion descended, and mechanical strength declined.
  • loading
  • [1]
    Rana A, Khan I, Ali S, et al. Controlling shale swelling and fluid loss properties of water-based drilling mud via ultrasonic impregnated SWCNTs/PVP nanocomposites[J]. Energy & Fuels, 2020, 34(8): 9515-9523.
    [2]
    Anderson R L, Ratcliffe I, Greenwell H C, et al. Clay swelling—A challenge in the oilfield[J]. Earth-Science Reviews, 2010, 98(3/4): 201-216.
    [3]
    Muhammed N S, Olayiwola T, Elkatatny S. A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids[J]. Journal of Petroleum Science and Engineering, 2021, 206: 109043. doi: 10.1016/j.petrol.2021.109043
    [4]
    Gholami R, Elochukwu H, Fakhari N, et al. A review on borehole instability in active shale formations: Interactions, mechanisms and inhibitors[J]. Earth-Science Reviews, 2018, 177: 2-13. doi: 10.1016/j.earscirev.2017.11.002
    [5]
    洪祥宇, 徐亨宇, 崔风路, 等. 分子模拟在非常规油气开发中的应用[J]. 计算力学学报, 2021, 38(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202103007.htm

    Hong Xiangyu, Xu Hengyu, Cui Fenglu, et al. Application of molecular simulation in unconventional oil and gas development[J]. Chinese Journal of Computational Mechanics, 2021, 38(3): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202103007.htm
    [6]
    范竞存, 余昊, 陈杰, 等. 非常规油气开采中的微纳米力学问题研究进展[J]. 中国科学技术大学学报, 2017, 47(2): 142-154. doi: 10.3969/j.issn.0253-2778.2017.02.005

    Fan Jingcun, Yu Hao, Chen Jie, et al. Research progress of micro/nano mechanical problems in unconventional oil and gas exploitation[J]. Journal of University of Science and Technology of China, 2017, 47(2): 142-154. doi: 10.3969/j.issn.0253-2778.2017.02.005
    [7]
    何满潮, 韩宗芳, 杨华. 不同温度下高岭石变形及破坏机理的分子动力学模拟[J]. 矿业科学学报, 2019, 4(1): 8-16. doi: 10.19606/j.cnki.jmst.2019.01.002

    He Manchao, Hanzongfang, Yang Hua. Molecular dynamics simulation of deformation and failure mechanism of kaolinite at different temperatures[J]. Journal of Mining Science and Technology, 2019, 4(1): 8-16. doi: 10.19606/j.cnki.jmst.2019.01.002
    [8]
    Han Z F, Cui Y, Meng Q, et al. The effect of inorganic salt on the mechanical properties of montmorillonite and its mechanism: a molecular dynamics study[J]. Chemical Physics Letters, 2021, 781: 138982. doi: 10.1016/j.cplett.2021.138982
    [9]
    Zhang Y Y, Xiao C. Molecular dynamics simulation of clay hydration inhibition of deep shale[J]. Processes, 2021, 9(6): 1069. doi: 10.3390/pr9061069
    [10]
    Planková B, Lísal M. Molecular dynamics of aqueous salt solutions in clay nanopores under the thermodynamic conditions of hydraulic fracturing: Interplay between solution structure and molecular diffusion[J]. Fluid Phase Equilibria, 2020, 505: 112355. doi: 10.1016/j.fluid.2019.112355
    [11]
    Svoboda M, Lísal M. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: insight from molecular dynamics simulations[J]. The Journal of Chemical Physics, 2018, 148(22): 222806. doi: 10.1063/1.5017166
    [12]
    徐加放, 顾甜甜, 沈文丽, 等. 无机盐对蒙脱石弹性力学参数影响的分子模拟与实验研究[J]. 中国石油大学学报: 自然科学版, 2016, 40(2): 83-90. doi: 10.3969/j.issn.1673-5005.2016.02.010

    Xu Jiafang, Gu Tiantian, Shen Wenli, et al. Influence simulation of inorganic salts on montmorillonite elastic mechanical parameters and experimental study[J]. Journal of China University of Petroleum: Edition of Natural Science, 2016, 40(2): 83-90. doi: 10.3969/j.issn.1673-5005.2016.02.010
    [13]
    李小迪. 典型页岩抑制剂抑制蒙脱石水化机理的分子模拟[D]. 东营: 中国石油大学(华东), 2016.
    [14]
    罗亚飞. Na-蒙脱石表面水化抑制机理的分子模拟[D]. 成都: 西南石油大学, 2019.
    [15]
    谢刚. 黏土矿物表面水化抑制作用机理研究[D]. 成都: 西南石油大学, 2017.
    [16]
    Boek E S, Coveney P V, Skipper N T. Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites[J]. Langmuir, 1995, 11(12): 4629-4631. doi: 10.1021/la00012a008
    [17]
    Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates[J]. American Mineralogist, 1954, 39(1): 92-97.
    [18]
    Zheng Y, Zaoui A. Mechanical behavior in hydrated Na-montmorillonite clay[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 505: 582-590. doi: 10.1016/j.physa.2018.03.093
    [19]
    Cygan R T, Liang J J, Kalinichev A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
    [20]
    Al-Zaoari K, Zheng Y Y, Wei P C, et al. Early stage of swelling process of dehydrated montmorillonite through molecular dynamics simulation[J]. Materials Chemistry and Physics, 2022, 283: 126015. doi: 10.1016/j.matchemphys.2022.126015
    [21]
    Wei P C, Zhang L L, Zheng Y Y, et al. Nanoscale friction characteristics of hydrated montmorillonites using molecular dynamics[J]. Applied Clay Science, 2021, 210: 106155. doi: 10.1016/j.clay.2021.106155
    [22]
    况联飞. 饱和蒙脱土高压力学特性基本机制多尺度研究[D]. 徐州: 中国矿业大学, 2013.
    [23]
    Nosé S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. doi: 10.1063/1.447334
    [24]
    Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
    [25]
    Vaughan M T, Guggenheim S. Elasticity of muscovite and its relationship to crystal structure[J]. Journal of Geophysical Research Atmospheres, 1986, 91(B5): 4657-4664. doi: 10.1029/JB091iB05p04657
    [26]
    Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics and Physics of Solids, 1962, 10(4): 343-352. doi: 10.1016/0022-5096(62)90005-4
    [27]
    Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(2): 127-140. doi: 10.1016/0022-5096(63)90060-7
    [28]
    Hill R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. doi: 10.1088/0370-1298/65/5/307
    [29]
    张亚云, 陈勉, 邓亚, 等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018, 46(10): 1489-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201810022.htm

    Zhang Yayun, Chen Mian, Deng Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201810022.htm
    [30]
    徐加放, 孙泽宁, 刘洪军, 等. 分子模拟无机盐抑制蒙脱石水化机理[J]. 石油学报, 2014, 35(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402022.htm

    Xu Jiafang, Sun Zening, Liu Hongjun, et al. Molecular simulation for inorganic salts inhibition mechanism on montmorillonite hydration[J]. Acta Petrolei Sinica, 2014, 35(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201402022.htm
    [31]
    Zhang L H, Lu X C, Liu X D, et al. Hydration and mobility of interlayer ions of(Nax, Cay)-montmorillonite: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2014, 118(51): 29811-29821. doi: 10.1021/jp508427c
    [32]
    Sposito G, Skipper N T, Sutton R, et al. Surface geochemistry of the clay minerals[J]. PNAS, 1999, 96(7): 3358-3364.
    [33]
    彭陈亮. 蒙脱石界面水化及疏水调控机理的量子力学/分子动力学研究[D]. 淮南: 安徽理工大学, 2016.
    [34]
    Li X, Zhu C, Jia Z Q, et al. Confinement effects and mechanistic aspects for montmorillonite nanopores[J]. Journal of Colloid and Interface Science, 2018, 523: 18-26.
    [35]
    Yu H, Xu H Y, Fan J C, et al. Transport of shale gas in microporous/nanoporous media: molecular to pore-scale simulations[J]. Energy & Fuels, 2021, 35(2): 911-943.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (232) PDF downloads(37) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return