Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Chang Zhibing, Wang Chuchu, Wang Yining, Wang Xinhong, Kuang Wenhao, Chu Mo. Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire[J]. Journal of Mining Science and Technology, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008
Citation: Chang Zhibing, Wang Chuchu, Wang Yining, Wang Xinhong, Kuang Wenhao, Chu Mo. Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire[J]. Journal of Mining Science and Technology, 2023, 8(2): 213-221. doi: 10.19606/j.cnki.jmst.2023.02.008

Reaction behaviors and synergistic effects for co-pyrolysis of Huadian oil shale and waste tire

doi: 10.19606/j.cnki.jmst.2023.02.008
  • Received Date: 2022-05-05
  • Rev Recd Date: 2022-08-08
  • Publish Date: 2023-03-30
  • In order to improve the efficiency of oil shale pyrolysis and the utilization value of semi-coke, this paper co-pyrolyzed Huadian oil shale and waste tire.The weight loss behavior, product yield and composition properties of co-pyrolysis were investigated by thermogravimetric analyzer and aluminum retort reactor.The synergistic effect was analyzed based on the difference between experimental and calculated values.The results show that co-pyrolysis can promote the release of volatile matter, the actual weight loss is higher than the calculated value at 500 ℃, and reaches the maximum value of 2.86 % when the proportion of waste tire is 80 %.The mixed pyrolysis of oil shale and waste tire has the effect of "increasing oil and reducing water".When the waste tire accounts for 50 %, the actual oil yield is 32.91 %, which is 1.5 % higher than the calculated value, and the actual water yield is 1.20 % to 1.77 % lower than the calculated value.Meanwhile, the content of heavy components with boiling point higher than 350 ℃ in the pyrolysis oil increases.There is higher yield of C1~C4 hydrocarbons from waste tire pyrolysis, and the calorific value of semi-coke is up to 30.43 MJ/kg.Co-pyrolysis can also improve the calorific value of pyrolysis gas and semi-coke.
  • loading
  • [1]
    刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报: 地球科学版, 2006, 36(6): 869-876. doi: 10.3321/j.issn:1671-5489.2006.06.005

    Liu Zhaojun, Dong Qingshui, Ye Songqing, et al. The situation of oil shale resources in China[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 869-876. doi: 10.3321/j.issn:1671-5489.2006.06.005
    [2]
    柏静儒, 李梦迪, 邵佳晔, 等. 油页岩与木屑混合热解特性研究[J]. 东北电力大学学报, 2015, 35(4): 62-66. doi: 10.3969/j.issn.1005-2992.2015.04.011

    Bai Jingru, Li Mengdi, Shao Jiaye, et al. The co-pyrolysis characteristic of oil shale and sawdust[J]. Journal of Northeast Dianli University, 2015, 35(4): 62-66. doi: 10.3969/j.issn.1005-2992.2015.04.011
    [3]
    柏静儒, 邵佳晔, 张宏喜, 等. 碱性木质素与油页岩共热解协同作用的TG-FTIR研究[J]. 太阳能学报, 2017, 38(6): 1533-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201706011.htm

    Bai Jingru, Shao Jiaye, Zhang Hongxi, et al. Tg-ftir research of alkaline lignin and oil shale co-pyrolysis synergy action[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1533-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201706011.htm
    [4]
    翟英媚, 朱轶铭, 杨天华. 生物质与油页岩共热解研究进展[J]. 洁净煤技术, 2022, 28(6): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202206008.htm

    Zhai Yingmei, Zhu Yiming, Yang Tianhua. Research progress on co-pyrolysis of biomass and oil shale[J]. Clean Coal Technology, 2022, 28(6): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202206008.htm
    [5]
    石勇, 赖登国, 陈兆辉, 等. 神木烟煤与桦甸油页岩的共热解特性[J]. 过程工程学报, 2016, 16(4): 634-638. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201604015.htm

    Shi Yong, Lai Dengguo, Chen Zhaohui, et al. Co-pyrolysis characteristics of Shenmu bituminous coal and Huadian oil shale[J]. The Chinese Journal of Process Engineering, 2016, 16(4): 634-638. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201604015.htm
    [6]
    Lu Y, Wang Y, Zhang J, et al. Investigation on the characteristics of pyrolysates during co-pyrolysis of Zhundong coal and Changji oil shale and its kinetics[J]. Energy, 2020, 200: 117529. doi: 10.1016/j.energy.2020.117529
    [7]
    高景龙, 杨磊, 王立强. 抚顺油页岩/聚乙烯热解动力学机理研究[J]. 塑料科技, 2019, 47(10): 12-16. doi: 10.15925/j.cnki.issn1005-3360.2019.10.003

    Gao Jinglong, Yang Lei, Wang Liqiang. Research on kinetic analysis of Fushun oil shale/PE pyrolysis[J]. Plastics Science and Technology, 2019, 47(10): 12-16. doi: 10.15925/j.cnki.issn1005-3360.2019.10.003
    [8]
    Mu M, Han X X, Jiang X M. Interactions between oil shale and hydrogen-rich wastes during co-pyrolysis: 1. Co-pyrolysis of oil shale and polyolefins[J]. Fuel, 2020, 265: 116994. doi: 10.1016/j.fuel.2019.116994
    [9]
    李年银, 王元, 陈飞, 等. 油页岩原位转化技术发展现状及展望[J]. 特种油气藏, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htm

    Li Nianyin, Wang Yuan, Chen Fei, et al. Development status and prospects of in situ conversion technology in oil shale[J]. Special Oil & Gas Reservoirs, 2022, 29(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202203001.htm
    [10]
    钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报: 地球科学版, 2006, 36(6): 877-887. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm

    Qian Jialin, Wang Jianqiu, Li Shuyuan. World oil shale utilization and its future[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 877-887. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200606001.htm
    [11]
    Lai D G, Shi Y, Geng S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173: 138-145. doi: 10.1016/j.fuel.2016.01.052
    [12]
    Chang Z B, Chu M, Zhang C, et al. Compositional and structural variations of bitumen and its interactions with mineral matters during Huadian oil shale pyrolysis[J]. Korean Journal of Chemical Engineering, 2017, 34(12): 3111-3118. doi: 10.1007/s11814-017-0207-x
    [13]
    畅志兵, 初茉, 张超, 等. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报, 2015, 43(6): 663-668. doi: 10.3969/j.issn.0253-2409.2015.06.004

    Chang Zhibing, Chu Mo, Zhang Chao, et al. Influence of particle size on oil yield from pyrolysis of oil shale[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 663-668. doi: 10.3969/j.issn.0253-2409.2015.06.004
    [14]
    梁鲲, 梁杰, 史龙玺, 等. 升温速率对桦甸油页岩热解特性及动力学的影响[J]. 矿业科学学报, 2018, 3(2): 194-200. http://kykxxb.cumtb.edu.cn/article/id/138

    Liang Kun, Liang Jie, Shi Longxi, et al. Effects of heating rate on the pyrolysis characteristics and kinetics of Huadian oil shale[J]. Journal of Mining Science and Technology, 2018, 3(2): 194-200. http://kykxxb.cumtb.edu.cn/article/id/138
    [15]
    畅志兵, 初茉, 张超, 等. 酸洗脱矿对油页岩热解失重特性及动力学的影响[J]. 矿业科学学报, 2018, 3(3): 290-298. http://kykxxb.cumtb.edu.cn/article/id/150

    Chang Zhibing, Chu Mo, Zhang Chao, et al. Effect of demineralization on pyrolysis characteristics and kinetics of two Chinese oil shales[J]. Journal of Mining Science and Technology, 2018, 3(3): 290-298. http://kykxxb.cumtb.edu.cn/article/id/150
    [16]
    刘兵权, 毛胜强, 欧阳任萍, 等. 两种不同类型废轮胎热分解特性及其溶胀性能[J]. 有色金属科学与工程, 2020, 11(2): 51-58.

    Liu Bingquan, Mao Shengqiang, Ouyang Renping, et al. Thermal decomposition characteristics and swelling performance of two kinds of scrapped tires[J]. Nonferrous Metals Science and Engineering, 2020, 11(2): 51-58.
    [17]
    Onay Ö. The catalytic co-pyrolysis of waste tires and pistachio seeds[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36(18): 2070-2077.
    [18]
    周斌, 赵晓胜. 油页岩共价键分布及其加氢热解特征[J/OL]. 洁净煤技术(2021-11-23)[2022-05-19]. http://kns.cnki.net/kcms/detail/11.3676.TD.20211123.1034.002.html.
    [19]
    Onay O, Koca H. Determination of synergetic effect in co-pyrolysis of lignite and waste tyre[J]. Fuel, 2015, 150: 169-174.
    [20]
    Abnisa F, Wan Daud W M A. Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire[J]. Energy Conversion and Management, 2015, 99: 334-345.
    [21]
    王擎, 崔达, 迟铭书, 等. 利用GC-MS与NMR技术研究干馏终温对桦甸页岩油组成性质的影响[J]. 化工学报, 2015, 66(7): 2670-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm

    Wang Qing, Cui Da, Chi Mingshu, et al. Influence of final retorting temperature on composition and property of Huadian shale oil[J]. CIESC Journal, 2015, 66(7): 2670-2677. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201507042.htm
    [22]
    王慧, 邹滢, 余锋, 等. 废轮胎热解油的化学组成分布[J]. 化工进展, 2011, 30(3): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201103041.htm

    Wang Hui, Zou Ying, Yu Feng, et al. Distributions of chemical components in used tire pyrolysis oil[J]. Chemical Industry and Engineering Progress, 2011, 30(3): 656-661. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201103041.htm
    [23]
    Burnham A K. Chemistry of shale oil cracking: Oil Shale, Tar Sands, and Related Materials[C]. Washington DC: American Chemical Society, 1981.
    [24]
    Campbell J H, Koskinas G H, Stout N D. Kinetics of oil generation from Colorado oil shale[J]. Fuel, 1978, 57(6): 372-376.
    [25]
    杨丽庆, 黄少凯, 田松柏, 等. 采用核磁共振方法表征重质油结构[J]. 石油学报: 石油加工, 2016, 32(5): 1038-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201605023.htm

    Yang Liqing, Huang Shaokai, Tian Songbai, et al. Analysis for chemical structure of heavy crude oil by NMR[J]. Acta Petrolei Sinica: Petroleum Processing Section, 2016, 32(5): 1038-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SXJG201605023.htm
    [26]
    Tong J H, Han X X, Wang S, et al. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques(solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy & Fuels, 2011, 25(9): 4006-4013.
    [27]
    Grioui N, Halouani K, Agblevor F A. Assessment of upgrading ability and limitations of slow co-pyrolysis: case of olive mill wastewater sludge/waste tires slow co-pyrolysis[J]. Waste Management, 2019, 92: 75-88.
    [28]
    He L, Ma Y, Yue C T, et al. Kinetic modeling of Kukersite oil shale pyrolysis with thermal bitumen as an intermediate[J]. Fuel, 2020, 279: 118371.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (176) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return