Volume 8 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
Jiang Xiaoping, Liu Junwei, Wang Lele, Lei Zhenbin, Hu Mingzhen. Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm[J]. Journal of Mining Science and Technology, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007
Citation: Jiang Xiaoping, Liu Junwei, Wang Lele, Lei Zhenbin, Hu Mingzhen. Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm[J]. Journal of Mining Science and Technology, 2023, 8(2): 202-212. doi: 10.19606/j.cnki.jmst.2023.02.007

Flotation condition recognition based on multi-scale convolutional neural network and LBP algorithm

doi: 10.19606/j.cnki.jmst.2023.02.007
  • Received Date: 2022-05-03
  • Rev Recd Date: 2022-09-25
  • Publish Date: 2023-03-30
  • Aiming at the problems of difficult detection, low recognition efficiency and strong subjectivity of foam flotation dosing state, a flotation condition recognition method of nuclear random-weight neural networks(K-RVFLNs)combining multi-scale CNN characteristics and improved local binary patterns(LBP)calculation methods is proposed.Firstly, non-downsampling Shearlet multi-scale decomposition(NSST)is performed on the bubble flotation image, the original image is decomposed into different frequency scales, and a multi-channel CNN network is designed to extract features from the multi-scale image.By improving the LBP algorithm to extract features as a supplement, the image features extracted by CNN are fused with LBP features; Finally, the classification decision is made by mapping to a higher dimensional space by the nuclear stochastic right neural network, and the accurate identification of flotation dosing state is realized.Experimental results show that the method of multi-scale CNN and LBP-TOP feature fusion is 5.34 % higher than that of the traditional LBP algorithm, 3.76 % higher than that of single CNN feature recognition method, and the accuracy of flotation condition classification is as high as 96.38 % in combination with K-RVFLNs, and the recognition accuracy and stability are greatly improved compared with the existing methods, and this method reduces manual intervention and is conducive to improving production efficiency.
  • loading
  • [1]
    Zhang J, Tang Z H, Ai M X, et al. Nonlinear modeling of the relationship between reagent dosage and flotation froth surface image by Hammerstein-Wiener model[J]. Minerals Engineering, 2018, 120: 19-28. doi: 10.1016/j.mineng.2018.01.018
    [2]
    黄凌霄, 廖一鹏. 浮选气泡NSCT域多尺度等效形态特征提取及识别[J]. 光学精密工程, 2020, 28(3): 704-716. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003021.htm

    Huang Lingxiao, Liao Yipeng. Recognition and multiscale equivalent morphological features extraction of flotation bubbles in NSCT domain[J]. Optics and Precision Engineering, 2020, 28(3): 704-716. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202003021.htm
    [3]
    姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911042.htm

    Yao Qunli, Hu Xian, Lei Hong. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11): 346-353. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201911042.htm
    [4]
    Fu Y H, Aldrich C. Froth image analysis by use of transfer learning and convolutional neural networks[J]. Minerals Engineering, 2018, 115: 68-78. doi: 10.1016/j.mineng.2017.10.005
    [5]
    Fu Y, Aldrich C. Flotation froth image recognition with convolutional neural networks[J]. Minerals Engineering, 2019, 132: 183-190. doi: 10.1016/j.mineng.2018.12.011
    [6]
    Morar S H, Bradshaw D J, Harris M C. The use of the froth surface lamellae burst rate as a flotation froth stability measurement[J]. Minerals Engineering, 2012, 36/37/38: 152-159.
    [7]
    Wang X L, Chen S, Yang C H, et al. Process working condition recognition based on the fusion of morphological and pixel set features of froth for froth flotation[J]. Minerals Engineering, 2019, 128: 17-26.
    [8]
    廖一鹏, 杨洁洁, 王志刚, 等. 基于双模态卷积神经网络自适应迁移学习的浮选工况识别[J]. 光子学报, 2020, 49(10): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm

    Liao Yipeng, Yang Jiejie, Wang Zhigang, et al. Flotation performance recognition based on dual-modality convolutional neural network adaptive transfer learning[J]. Acta Photonica Sinica, 2020, 49(10): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202010020.htm
    [9]
    Li Z M, Gui W H, Zhu J Y. Fault detection in flotation processes based on deep learning and support vector machine[J]. Journal of Central South University, 2019, 26(9): 2504-2515. doi: 10.1007/s11771-019-4190-8
    [10]
    陈奕霏, 蔡耀仪, 李诗文. 基于轻量型卷积视觉Transformer的锑浮选工况识别[J]. 激光与电子学科进展, 2023, 60(6): 0615002.

    Chen Yifei, Cai Yaoyi, Li Shiwen, et al. Working condition recongnition using lightweight convolution vision transformer network for antimony flotation process[J]. Laser & Optoelectronics Progress, 2023, 60(6): 0615002.
    [11]
    Labate D, Lim W Q, Kutyniok G, et al. Sparse multidimensional representation using shearlets[C]//Optics and Photonics 2005. Proc SPIE 5914, Wavelets XI, San Diego, California, USA. 2005, 5914: 254-262.
    [12]
    Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. doi: 10.1016/j.acha.2007.09.003
    [13]
    Liu X B, Mei W B, Du H Q, et al. A novel image fusion algorithm based on nonsubsampled shearlet transform and morphological component analysis[J]. Signal, Image and Video Processing, 2016, 10(5): 959-966.
    [14]
    Shahdoosti H R, Khayat O. Image denoising using sparse representation classification and non-subsampled shearlet transform[J]. Signal, Image and Video Processing, 2016, 10(6): 1081-1087.
    [15]
    Wu J A, Guo R, Liu R Z, et al. Convolutional neural network target recognition for missile-borne linear array LiDAR[J]. Acta Photonica Sinica, 2019, 48(7): 701002.
    [16]
    Liu S, Qi L, Qin H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8759-8768.
    [17]
    Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, CA, USA: IEEE, 2019: 658-666.
    [18]
    Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
    [19]
    余益团. 基于LBP-top特征的新生儿疼痛表情识别研究[D]. 南京: 南京邮电大学, 2016.
    [20]
    Zhao G Y, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928.
    [21]
    赵突. 基于视频的人脸微表情识别关键技术研究[D]. 南京: 东南大学, 2018.
    [22]
    李强. 基于视频的微表情检测与识别技术研究[D]. 南京: 东南大学, 2017.
    [23]
    郭承玉. 人脸自发微表情识别方法研究[D]. 长沙: 国防科技大学, 2019.
    [24]
    余益团. 基于LBP-top特征的新生儿疼痛表情识别研究[D]. 南京: 南京邮电大学, 2016.
    [25]
    Pao Y H, Takefuji Y. Functional-link net computing: theory, system architecture, and functionalities[J]. Computer, 1992, 25(5): 76-79.
    [26]
    Huang G B. An insight into extreme learning machines: random neurons, random features and kernels[J]. Cognitive Computation, 2014, 6(3): 376-390.
    [27]
    Sinha A, Soun T, Deb K. Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems[J]. Swarm and Evolutionary Computation, 2019, 44: 496-510.
    [28]
    Kim J, Lee B. Identification of Alzheimer's disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine[J]. Human Brain Mapping, 2018, 39(9): 3728-3741.
    [29]
    廖一鹏, 张进, 王志刚, 等. 结合双模多尺度CNN特征及自适应深度KELM的浮选工况识别[J]. 光学精密工程, 2020, 28(8): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008018.htm

    Liao Yipeng, Zhang Jin, Wang Zhigang, et al. Flotation performance recognition based on dual-modality multiscale CNN features and adaptive deep learning KELM[J]. Optics and Precision Engineering, 2020, 28(8): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202008018.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (275) PDF downloads(40) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return