Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Zhao Hongpeng, He Dengke, Hong Yü. Inversion of microtremor recordings dispersion curve based on geological unit[J]. Journal of Mining Science and Technology, 2022, 7(6): 662-669. doi: 10.19606/j.cnki.jmst.2022.06.003
Citation: Zhao Hongpeng, He Dengke, Hong Yü. Inversion of microtremor recordings dispersion curve based on geological unit[J]. Journal of Mining Science and Technology, 2022, 7(6): 662-669. doi: 10.19606/j.cnki.jmst.2022.06.003

Inversion of microtremor recordings dispersion curve based on geological unit

doi: 10.19606/j.cnki.jmst.2022.06.003
  • Received Date: 2021-10-22
  • Rev Recd Date: 2021-11-25
  • Publish Date: 2022-12-31
  • The urban microtremor exploration technology is a method that detects urban underground structures by using the weak vibration of environment.The surface wave is dominant in the microtremor recordings, and the surface wave dispersion curve can be extracted by further analysis of the fretting signal, and the shear wave velocity can be obtained by inverting the dispersion curve.There is a contradiction among the scale of stratigraphic division, the calculation cost and solution stability.The more stratigraphic division layers, the more unknown parameters in the inversion process.Too much stratigraphic division will increase the computational overhead, aggravate the uncertainty of the equation, and make the inversion results inaccurate.In order to solve this problem, this paper proposes an improved algorithm based on geological unit by drawing on previous studies.When the convergence rate of inversion is low, the two adjacent units with small s-wave velocity difference are combined and the combined stratum participates in inversion.Through the analysis of numerical simulation and measured data, the improved inversion algorithm based on geological unit can reduce the uncertainty of the equation, obtain more stable solutions and reduce the computational overhead.
  • loading
  • [1]
    李雪燕. 城市微动高阶面波在浅层成像中的应用[D]. 合肥: 中国科学技术大学, 2019.
    [2]
    彭刘亚, 任川, 冯伟栋. 多模式瑞雷波频散曲线的粒子群反演方法研究[J]. 地球物理学进展, 2018, 33(3): 1262-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201803050.htm

    Peng Liuya, Ren Chuan, Feng Weidong. Multimodal Rayleigh wave dispersion curve inversion by particle swarm optimization[J]. Progress in Geophysics, 2018, 33(3): 1262-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201803050.htm
    [3]
    Toksöz M N, Lacoss R T. Microseisms: mode structure and sources[J]. Science, 1968, 159(3817): 872-873. doi: 10.1126/science.159.3817.872
    [4]
    孙远, 杨峰, 郑晶, 等. 基于变分模态分解和小波能量熵的微震信号降噪[J]. 矿业科学学报, 2019, 4(6): 469-479. http://kykxxb.cumtb.edu.cn/article/id/248

    Sun Yuan, Yang Feng, Zheng Jing, et al. Research on microseismic signal denoising based on variational mode decomposition and wavelet energy entropy[J]. Journal of Mining Science and Technology, 2019, 4(6): 469-479. http://kykxxb.cumtb.edu.cn/article/id/248
    [5]
    夏江海, 高玲利, 潘雨迪, 等. 高频面波方法的若干新进展[J]. 地球物理学报, 2015, 58(8): 2591-2605. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508002.htm

    Xia Jianghai, Gao Lingli, Pan Yudi, et al. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics, 2015, 58(8): 2591-2605. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508002.htm
    [6]
    刘云祯, 王振东. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm

    Liu Yunzhen, Wang Zhendong. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm
    [7]
    Xia J H, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. GEOPHYSICS, 1999, 64(3): 691-700. doi: 10.1190/1.1444578
    [8]
    宋先海, 肖柏勋, 黄荣荣, 等. 用等厚薄层权重自适应迭代阻尼最小二乘法反演瑞雷波频散曲线[J]. 物探与化探, 2003, 27(3): 212-216. doi: 10.3969/j.issn.1000-8918.2003.03.013

    Song Xianhai, Xiao Boxun, Huang Rongrong, et al. The inversion of dispersion curves using self-adaptively iterative damping least square method by combining equal thinner layers with weighting matrix[J]. Geophysical and Geochemical Exploration, 2003, 27(3): 212-216. doi: 10.3969/j.issn.1000-8918.2003.03.013
    [9]
    Yamanaka H, Ishida H. Application of genetic algorithms to an inversion of surface wave dispersion data[J]. Bulletin of the Seismological Society of America, 1996, 86(2): 436-444.
    [10]
    蔡伟, 宋先海, 袁士川, 等. 基于萤火虫和蝙蝠群智能算法的瑞雷波频散曲线反演[J]. 地球物理学报, 2018, 61(6): 2409-2420. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806021.htm

    Cai Wei, Song Xianhai, Yuan Shichuan, et al. Inversion of Rayleigh wave dispersion curves based on firefly and bat algorithms[J]. Chinese Journal of Geophysics, 2018, 61(6): 2409-2420. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806021.htm
    [11]
    Beaty K S, Schmitt D R, Sacchi M. Simulated annealing inversion of multimode Rayleigh wave dispersion curves for geological structure[J]. Geophysical Journal International, 2002, 151(2): 622-631.
    [12]
    Shirazi H, Abdallah I, Nazarian S. Developing artificial neural network models to automate spectral analysis of surface wave method in pavements[J]. Journal of Materials in Civil Engineering, 2009, 21(12): 722-729.
    [13]
    Song X H, Gu H M, Zhang X Q, et al. Pattern search algorithms for nonlinear inversion of high-frequency Rayleigh-wave dispersion curves[J]. Computers & Geosciences, 2008, 34(6): 611-624.
    [14]
    Song X H, Tang L, Lu X C, et al. Application of particle swarm optimization to interpret Rayleigh wave dispersion curves[J]. Journal of Applied Geophysics, 2012, 84: 1-13.
    [15]
    Wang S, He D K. A new method for Rayleigh wave inversion by geological unit merging[J]. E3S Web of Conferences, 2020, 165: 03008.
    [16]
    Lacoss R T, Kelly E J, Toksöz M N. Estimation of seismic noise structure using arrays[J]. GEOPHYSICS, 1969, 34(1): 21-38.
    [17]
    Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin, Earthquake Research Institute, 1957, 35: 415-456.
    [18]
    鲁来玉. 基于平面波模型重访地震背景噪声互相关及空间自相关(SPAC)[J]. 地球与行星物理论评, 2021, 52(2): 123-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202102001.htm

    Lu Laiyu. Revisiting the cross-correlation and spatial autocorrelation (SPAC) of the seismic ambient noise based on the plane wave model[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(2): 123-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202102001.htm
    [19]
    徐佩芬, 李世豪, 凌甦群, 等. 利用SPAC法估算地壳S波速度结构[J]. 地球物理学报, 2013, 56(11): 3846-3854. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201311026.htm

    Xu Peifen, Li Shihao, Ling Suqun, et al. Application of SPAC method to estimate the crustal S-wave velocity structure[J]. Chinese Journal of Geophysics, 2013, 56(11): 3846-3854. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201311026.htm
    [20]
    Asten M W. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods[J]. GEOPHYSICS, 2006, 71(6): 153-162.
    [21]
    夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015: 105-106.
    [22]
    朱广生, 桂志先, 熊新斌, 等. 密度与纵横波速度关系[J]. 地球物理学报, 1995, 38(S1): 260-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S1.025.htm

    Zhu Guangsheng, Gui Zhixian, Xiong Xinbin, et al. Relationships between density and p-wave, s-wave velocities[J]. Chinese Journal of Geophysics, 1995, 38(S1): 260-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX5S1.025.htm
    [23]
    肖柏勋. 高模式瑞雷面波及其正反演研究[D]. 长沙: 中南大学, 2000.
    [24]
    赵雪然, 刘四新, 张健桥, 等. 基于不同半径分段组合的微动探测方法研究[J]. 世界地质, 2020, 39(1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202001015.htm

    Zhao Xueran, Liu Sixin, Zhang Jianqiao, et al. Research on microtremor survey method based on segmentation combination of different radii[J]. Global Geology, 2020, 39(1): 150-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ202001015.htm
    [25]
    刘庆华. 基于SPAC和NCF技术的被动源面波浅勘方法研究[D]. 北京: 中国地震局地球物理研究所, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (303) PDF downloads(39) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return