Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Ma Fangyuan, Wang Hui, Cheng Jiulong, Song Baojia, Dong Yi, Chen Zhi. Improve the quality of 'dead band' audio-frequency magnetotelluric impedance data using electric field remote reference[J]. Journal of Mining Science and Technology, 2022, 7(6): 655-661. doi: 10.19606/j.cnki.jmst.2022.06.002
Citation: Ma Fangyuan, Wang Hui, Cheng Jiulong, Song Baojia, Dong Yi, Chen Zhi. Improve the quality of "dead band" audio-frequency magnetotelluric impedance data using electric field remote reference[J]. Journal of Mining Science and Technology, 2022, 7(6): 655-661. doi: 10.19606/j.cnki.jmst.2022.06.002

Improve the quality of "dead band" audio-frequency magnetotelluric impedance data using electric field remote reference

doi: 10.19606/j.cnki.jmst.2022.06.002
  • Received Date: 2021-10-30
  • Rev Recd Date: 2022-03-21
  • Publish Date: 2022-12-31
  • Magnetic remote-reference is the most practical noise suppression method in magnetotelluric data processing.In actual audio-frequency magnetotelluric (AMT) sounding observation, usually the "one with three" or "one with four" acquisition method is used, i.e., acquiring magnetic field of only one site and simultaneously acquiring electric field of multiple sites, without magnetic field data for remote-reference processing.The natural electro-magnetic field in the 5~1 kHz "dead band" range of signal strength is weak, resulting in the impedance in this band to have "outlies".In this paper, we found that the impedance estimated by using the local magnetic field and the local electric field as the reference in the "dead band" will be "upward" and "downward" biased respectively, while the electric field as the remote-reference channel can significantly improve the impedance quality in the "dead band".After processing the measured data of different reference distances, it is found that the effect of the electric field remote-reference processing is better than that of the local magnetic field and the local electric field.And the effect is comparable to that of magnetic field remote-reference.This has practical implications for AMT data processing.
  • loading
  • [1]
    汤井田, 任政勇, 周聪, 等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8): 2681-2705. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508008.htm

    Tang Jingtian, Ren Zhengyong, Zhou Cong, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: a review[J]. Chinese Journal of Geophysics, 2015, 58(8): 2681-2705. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201508008.htm
    [2]
    Romano G, Balasco M, Siniscalchi A, et al. Geological and geo-structural characterization of the Montemurro area (Southern Italy) inferred from audiomagnetotelluric survey[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 1156-1171. doi: 10.1080/19475705.2018.1502210
    [3]
    Ghiglieri G, Pistis M, Abebe B, et al. Three-dimensional hydrostratigraphical modelling supporting the evaluation of fluoride enrichment in groundwater: lakes basin (Central Ethiopia)[J]. Journal of Hydrology: Regional Studies, 2020, 32: 100756. doi: 10.1016/j.ejrh.2020.100756
    [4]
    Shi Y, Xu Y X, Yang B, et al. Three-dimensional audio-frequency magnetotelluric imaging of Zhuxi copper-tungsten polymetallic deposits, South China[J]. Journal of Applied Geophysics, 2020, 172: 103910. doi: 10.1016/j.jappgeo.2019.103910
    [5]
    Zhang G, Lü Q T, Zhang G B, et al. Joint interpretation of geological, magnetic, AMT, and ERT data for mineral exploration in the northeast of Inner Mongolia, China[J]. Pure and Applied Geophysics, 2018, 175(3): 989-1002. doi: 10.1007/s00024-017-1733-5
    [6]
    Zhao H, Wang L H. Application of AMT in the investigation of new Loushanguan tunnel of Chongqing Guizhou railway[J]. IOP Conference Series: Earth and Environmental Science, 2020, 531(1): 012065. doi: 10.1088/1755-1315/531/1/012065
    [7]
    李晋, 张贤, 蔡锦. 利用变分模态分解(VMD)和匹配追踪(MP)联合压制音频大地电磁(AMT)强干扰[J]. 地球物理学报, 2019, 62(10): 3866-3884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910028.htm

    Li Jin, Zhang Xian, Cai Jin. Suppression of strong interference for AMT using VMD and MP. Chinese Journal of Geophysics. 2019, 62(10): 3866-3884. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201910028.htm
    [8]
    Sims W E, Bostick F X Jr, Smith H W. The estimation of magnetotelluric impedance tensor elements from measured data[J]. GEOPHYSICS, 1971, 36, 938-942.
    [9]
    Egbert G D, Booker J R. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 87(1): 173-194. doi: 10.1111/j.1365-246X.1986.tb04552.x
    [10]
    Chave A D, Thomson D J, Ander M E. On the robust estimation of power spectra, coherences, and transfer functions[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B1): 633-648. doi: 10.1029/JB092iB01p00633
    [11]
    Gamble T D, Goubau W M, Clarke J. Magnetotellurics with a remote magnetic reference[J]. GEOPHYSICS, 1979, 44(1): 53-68.
    [12]
    张刚, 庹先国, 王绪本, 等. 不同参数条件下远参考大地电磁处理效果对比分析[J]. 地球物理学进展, 2016, 31(6): 2458-2466. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606014.htm

    Zhang Gang, Tuo Xianguo, Wang Xuben, et al. Analysis on remote reference magnetotelluric effect under different parameters[J]. Progress in Geophysics, 2016, 31(6): 2458-2466. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201606014.htm
    [13]
    张刚, 庹先国, 王绪本, 等. 磁场相关性在远参考大地电磁数据处理中的应用[J]. 石油地球物理勘探, 2017, 52(6): 1333-1343, 1125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201706025.htm

    Zhang Gang, Tuo Xianguo, Wang Xuben, et al. Application of magnetic field correlation in remote reference magnetotelluric data processing[J]. Oil Geophysical Prospecting, 2017, 52(6): 1333-1343, 1125. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201706025.htm
    [14]
    Shalivahan N. How remote can the far remote reference site for magnetotelluric measurements Be?[J]. Journal of Geophysical Research Atmospheres, 2002, 107(B6): 2105.
    [15]
    徐志敏, 辛会翠, 吕扶君. 庐枞矿集区大地电磁法的远参考效果研究[J]. 地球物理学进展, 2014, 29(4): 1822-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201404045.htm

    Xu Zhimin, Xin Huicui, Lü Fujun. Ore cluster area of Luzong magnetotelluric(MT)method of remote reference research[J]. Progress in Geophysics, 2014, 29(4): 1822-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201404045.htm
    [16]
    Garcia X, Jones A G. Atmospheric sources for audio-magnetotelluric (AMT) sounding[J]. GEOPHYSICS, 2002, 67(2): 448-458.
    [17]
    李红领, 王光杰, 杨磊, 等. 基于蒙古东戈壁AMT数据的"死频带"分析[J]. 地球物理学进展, 2020, 35(6): 2153-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202006014.htm

    Li Hongling, Wang Guangjie, Yang Lei, et al. Dead band analysis based on Mongolian East Gobi AMT data[J]. Progress in Geophysics, 2020, 35(6): 2153-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202006014.htm
    [18]
    Larnier H, Sailhac P, Chambodut A. Wavelet-based processing of AMT data exhibiting atmospheric waves based on their source properties[C]//Proceedings of 79th EAGE Conference and Exhibition 2017, Paris, France. Netherlands: EAGE Publications BV, 2017: 1-5.
    [19]
    周聪, 汤井田, 任政勇, 等. 大地电磁法"死频带"畸变数据的Rhoplus校正[J]. 地球物理学报, 2015, 58(12): 4648-4660. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201512027.htm

    Zhou Cong, Tang Jingtian, Ren Zhengyong, et al. Application of the Rhoplus method to a audio magnetotelluric dead band distortion data[J]. Chinese Journal of Geophysics, 2015, 58(12): 4648-4660. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201512027.htm
    [20]
    Simpson F, Bahr K. Practical magnetotellurics[M]. Cambridge: Cambridge University Press, 2005.
    [21]
    Sternberg B K. The variability of naturally occurring magnetic field levels: 10 Hz to 8 kHz[J]. GEOPHYSICS, 2010, 75(6): 187-197.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (371) PDF downloads(53) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return