Volume 7 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
Gao Ansen, Qi Chengzhi, Shan Renliang. State of the art review of the risk assessment and early warning methods for fault-slip rockburst[J]. Journal of Mining Science and Technology, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001
Citation: Gao Ansen, Qi Chengzhi, Shan Renliang. State of the art review of the risk assessment and early warning methods for fault-slip rockburst[J]. Journal of Mining Science and Technology, 2022, 7(6): 643-654. doi: 10.19606/j.cnki.jmst.2022.06.001

State of the art review of the risk assessment and early warning methods for fault-slip rockburst

doi: 10.19606/j.cnki.jmst.2022.06.001
  • Received Date: 2022-01-24
  • Rev Recd Date: 2022-03-14
  • Publish Date: 2022-12-31
  • Underground engineering generally needs to pass through a significant number of geological structure areas, which can easily induce fault-slip rockburst, threatening the engineering structure's stability.For revealing the mechanism of disaster causing of fault-slip rockburst, the geological structural conditions, spatiotemporal inoculation characteristics, disturbance triggering mechanism, risk assessment indicators and the early warning methods of fault-slip rockburst was systematically analyzed in this study.The results show that fault-slip rockburst mostly occurs in the geological structure area which containing the weak structural plane or bedding plane, and the hard structural surface controls the rockburst crater boundary.The fault-slip rockburst has typical spatiotemporal precursor characteristics.As a matter of fact, the acoustic emission (microseismic) monitoring parameters have a typical precursor of a "relatively quiet period" in the critical failure stage, and the infrared thermal image temperature will appear the phenomenon of short-term abnormality.The natural defect structure provides geological structure conditions for the occurrence of fault-slip rockburst, roadway tunneling provides a slip space for fault-slip rockburst, and the dynamic stress provides disturbance triggering conditions for triggering fault-slip rockburst.
  • loading
  • [1]
    吴爱祥, 王洪江, 尹升华, 等. 深层金属矿原位流态化开采构想[J]. 矿业科学学报, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001

    Wu Aixiang, Wang Hongjiang, Yin Shenghua, et al. Conception of in-situ fluidization mining for deep metal mines[J]. Journal of Mining Science and Technology, 2021, 6(3): 255-260. doi: 10.19606/j.cnki.jmst.2021.03.001
    [2]
    Feng X T, Liu J P, Chen B R, et al. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538-545. doi: 10.1016/J.ENG.2017.04.013
    [3]
    刘冬桥, 张晓云, 何满潮, 等. 砂岩冲击岩爆实验碎屑研究[J]. 矿业科学学报, 2018, 3(3): 246-252. doi: 10.19606/j.cnki.jmst.2018.03.005

    Liu Dongqiao, Zhang Xiaoyun, He Manchao, et al. Study on sandstone fragments from impact rockburst experiments[J]. Journal of Mining Science and Technology, 2018, 3(3): 246-252. doi: 10.19606/j.cnki.jmst.2018.03.005
    [4]
    钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1): 1-6. doi: 10.16285/j.rsm.2014.01.028

    Qian Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1): 1-6. doi: 10.16285/j.rsm.2014.01.028
    [5]
    冯夏庭, 陈炳瑞, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 即时型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001

    Feng Xiating, Chen Bingrui, Ming Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 433-444. doi: 10.3969/j.issn.1000-6915.2012.03.001
    [6]
    陈炳瑞, 冯夏庭, 明华军, 等. 深埋隧洞岩爆孕育规律与机制: 时滞型岩爆[J]. 岩石力学与工程学报, 2012, 31(3): 561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014

    Chen Bingrui, Feng Xiating, Ming Huajun, et al. Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 561-569. doi: 10.3969/j.issn.1000-6915.2012.03.014
    [7]
    何满潮, 苗金丽, 李德建, 等. 深部花岗岩试样岩爆过程实验研究[J]. 岩石力学与工程学报, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001

    He Manchao, Miao Jinli, Li Dejian, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865-876. doi: 10.3321/j.issn:1000-6915.2007.05.001
    [8]
    Ortlepp W D. Note on fault-slip motion inferred from a study of micro-cataclastic particles from an underground shear rupture[J]. Pure and Applied Geophysics, 1992, 139(3/4): 677-695.
    [9]
    Kaiser P K, Cai M. Design of rock support system under rockburst condition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(3): 215-227. doi: 10.3724/SP.J.1235.2012.00215
    [10]
    Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M]. Rotterdam: A A Balkema, 2000: 57-81.
    [11]
    Storchak D A, Harris J, Brown L, et al. Rebuild of the bulletin of the international seismological centre (ISC)—part 2: 1980-2010[J]. Geoscience Letters, 2020, 7: 18. doi: 10.1186/s40562-020-00164-6
    [12]
    Wang C L, Lu H, Wang F L, et al. Characteristic point of the relatively quiet period for limestone failure under uniaxial compression[J]. Journal of Testing and Evaluation, 2015, 43(6): 20140187. doi: 10.1520/JTE20140187
    [13]
    何满潮, 杨国兴, 苗金丽, 等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报, 2009, 28(8): 1521-1529. doi: 10.3321/j.issn:1000-6915.2009.08.002

    He Manchao, Yang Guoxing, Miao Jinli, et al. Classification and research methods of rockburst experimental fragments[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1521-1529. doi: 10.3321/j.issn:1000-6915.2009.08.002
    [14]
    Hoek E, Brown E T. The Hoek-Brown failure criterion and GSI-2018 edition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 445-463. doi: 10.1016/j.jrmge.2018.08.001
    [15]
    杨淑清. 隧洞岩爆机制物理模型试验研究[J]. 武汉水利电力大学学报, 1993, 26(2): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199302005.htm

    Yang Shuqing. An experimental study on rockburst mechanism around tunnils by physical simulation[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1993, 26(2): 160-166. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199302005.htm
    [16]
    谭以安. 岩爆特征及岩体结构效应[J]. 中国科学: B辑, 1991, 21(9): 985-991. doi: 10.3321/j.issn:1006-9240.1991.09.002

    Tan Yian. Rockburst characteristics and effect of rock mass structure[J]. Science in China: Serier B, 1991, 21(9): 985-991. doi: 10.3321/j.issn:1006-9240.1991.09.002
    [17]
    徐林生, 王兰生. 二郎山公路隧道岩爆发生规律与岩爆预测研究[J]. 岩土工程学报, 1999, 21(5): 569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009

    Xu Linsheng, Wang Lansheng. Study on the laws of rockburst and its forecasting in the tunnel of Erlang Mountain Road[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 569-572. doi: 10.3321/j.issn:1000-4548.1999.05.009
    [18]
    陈宗基. 岩爆的工程实录、理论与控制[J]. 岩石力学与工程学报, 1987, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm

    Tan Tjongkie. Rockburst, case records, theory and contral[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX198701001.htm
    [19]
    Ryder J A. Excess shear stress in the assessment of geologically hazardous situations[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1988, 88(1): 27-39.
    [20]
    Kocharyan G G, Kulyukin A M. Study of caving features for underground workings in a rock mass of block structure with dynamic action. Part Ⅱ. Mechanical properties of interblock gaps[J]. Journal of Mining Science, 1994, 30(5): 437-446. doi: 10.1007/BF02047334
    [21]
    Zhu W C, Li Z H, Zhu L, et al. Numerical simulation on rockburst of underground opening triggered by dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2010, 25(5): 587-599. doi: 10.1016/j.tust.2010.04.004
    [22]
    Jiang H M, Li J, Deng S X, et al. Experimental investigation and analysis of triggering mechanism for fault-slip bursts of the tunnel surrounding rock with external disturbance[J]. Shock and Vibration, 2018, 2018: 1687519.
    [23]
    邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm

    Deng Shuxin, Wang Mingyang, Li Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm
    [24]
    煤炭科学研究总院. MT/T 174-2000煤层冲击倾向性分类及指数的测定方法[S]. 北京: 煤炭工业出版社, 2000.
    [25]
    王庆武, 巨能攀, 杜玲丽, 等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质, 2016, 43(6): 88-94, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606015.htm

    Wang Qingwu, Ju Nengpan, Du Lingli, et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 88-94, 100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606015.htm
    [26]
    宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm

    Gong Fengqiang, Yan Jingyi, Li Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201809001.htm
    [27]
    唐礼忠, 潘长良, 王文星. 用于分析岩爆倾向性的剩余能量指数[J]. 中南工业大学学报: 自然科学版, 2002, 33(2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200202004.htm

    Tang Lizhong, Pan Changliang, Wang Wenxing. Surplus energy index for analysing rock burst proneness[J]. Journal of Central South University of Technology: Natural Science, 2002, 33(2): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200202004.htm
    [28]
    殷志强, 李夕兵, 董陇军, 等. 动静组合加载条件岩爆特性及倾向性指标[J]. 中南大学学报: 自然科学版, 2014, 45(9): 3249-3256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409042.htm

    Yin Zhiqiang, Li Xibing, Dong Longjun, et al. Rockburst characteristics and proneness index under coupled static and dynamic loads[J]. Journal of Central South University: Science and Technology, 2014, 45(9): 3249-3256 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201409042.htm
    [29]
    Russenes B F. Analysis of rock spalling for tunnels in steep valley sides[D]. Trondheim: Norwegian Institute of Technology, 1974.
    [30]
    Tao Z Y. Support design of tunnels subjected to rockbursting[C]//Symposium on Rock Mechanics and Power Plants, Rotterdam: A A Balkema, 1988: 407-411.
    [31]
    谷明成, 何发亮, 陈成宗. 秦岭隧道岩爆的研究[J]. 岩石力学与工程学报, 2002, 21(9): 1324-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209009.htm

    Gu Mingcheng, He Faliang, Chen Chengzong. Study on rockburst in Qingling tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1324-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200209009.htm
    [32]
    Turchaninov I A, Markov G A, Gzovsky M V, et al. State of stress in the upper part of the Earth's crust based on direct measurements in mines and on tectonophysical and seismological studies[J]. Physics of the Earth and Planetary Interiors, 1972, 6(4): 229-234.
    [33]
    Hawkes I. Significance of in-situ stress levels[C]//The 1st International Society for Rock Mechanics and Rock Engineering Congress, Lisbon, 1966.
    [34]
    Barton N, Lien R, Lunde J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics, 1974, 6(4): 189-236.
    [35]
    Zhang J J, Fu B J, Li Z K, et al. Criterion and classification for strain mode rockbursts based on five-factor comprehensive method[C]//12th ISRM Congress, Harmonising Rock Engineering and the Environment, Boca Raton: CRC Press, 2011: 1435-1440.
    [36]
    李庶林, 冯夏庭, 王泳嘉, 等. 深井硬岩岩爆倾向性评价[J]. 东北大学学报, 2001, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm

    Li Shulin, Feng Xiating, Wang Yongjia, et al. Evaluation of rockburst proneness in a deep hard rock mine[J]. Journal of Northeastern University, 2001, 22(1): 60-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200101017.htm
    [37]
    Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior of rocks[C]//1st North American Rock Mechanics Symposium. Rotterdam: A A Balkema, 1994: 945-952.
    [38]
    Homand F, Piguet J P, Revalor R, et al. Dynamic phenomena in mines and characteristics of rocks[C]//2nd International Symposium on Rockbursts and Seismicity in Mines. Rotterdam: A A Balkema, 1990: 139-142.
    [39]
    Richard S. Analysis of fault-slip mechanisms in hard rock mining[D]. Montreal: McGill University, 1999.
    [40]
    吴立新, 刘善军, 吴育华, 等. 遥感-岩石力学(Ⅳ): 岩石压剪破裂的热红外辐射规律及其地震前兆意义[J]. 岩石力学与工程学报, 2004, 23(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404001.htm

    Wu Lixin, Liu Shanjun, Wu Yuhua, et al. Remote-sensing-rock mechanics(ⅳ)—laws of thermal infrared radiation from compressively-sheared fracturing of rock and its meanings for earthquake omens[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 539-544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200404001.htm
    [41]
    刘善军, 吴立新, 张艳博. 岩石破裂前红外热像的时空演化特征[J]. 东北大学学报: 自然科学版, 2009, 30(7): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm

    Liu Shanjun, Wu Lixin, Zhang Yanbo. Temporal-spatial evolution features of infrared thermal images before rock failure[J]. Journal of Northeastern University: Natural Science, 2009, 30(7): 1034-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200907029.htm
    [42]
    张艳博, 李健, 刘祥鑫, 等. 巷道岩爆红外辐射前兆特征实验研究[J]. 采矿与安全工程学报, 2015, 32(5): 786-792. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201505015.htm

    Zhang Yanbo, Li Jian, Liu Xiangxin, et al. Infrared radiation portentous characteristics of rock burst in roadway[J]. Journal of Mining & Safety Engineering, 2015, 32(5): 786-792. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201505015.htm
    [43]
    张茹, 谢和平, 刘建锋, 等. 单轴多级加载岩石破坏声发射特性试验研究[J]. 岩石力学与工程学报, 2006, 25(12): 2584-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612034.htm

    Zhang Ru, Xie Heping, Liu Jianfeng, et al. Experimental study on acoustic emission characteristics of rock failure under uniaxial multilevel loadings[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2584-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200612034.htm
    [44]
    杨健, 王连俊. 岩爆机理声发射试验研究[J]. 岩石力学与工程学报, 2005, 24(20): 3796-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200520030.htm

    Yang Jian, Wang Lianjun. Study on mechanism of rock burst by acousitc emission testing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(20): 3796-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200520030.htm
    [45]
    Su G S, Gan W, Zhai S B, et al. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock[J]. Journal of Central South University, 2020, 27(10): 2883-2898.
    [46]
    张艳博, 张行, 孙林, 等. 花岗岩巷道岩爆声发射振铃计数波动规律研究[J]. 地下空间与工程学报, 2020, 16(1): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001033.htm

    Zhang Yanbo, Zhang Hang, Sun Lin, et al. Study on the wave characteristics of acoustic emission count in rock burst of granite tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 260-266. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202001033.htm
    [47]
    Wang C L, Chen Z, Liao Z F, et al. Experimental investigation on predicting precursory changes in entropy for dominant frequency of rockburst[J]. Journal of Central South University, 2020, 27(10): 2834-2848.
    [48]
    谢和平, Pariseau W G. 岩爆的分形特征和机理[J]. 岩石力学与工程学报, 1993, 12(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199301003.htm

    Xie Heping, Pariseau W G. Fractal character and mechanism of rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(1): 28-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199301003.htm
    [49]
    裴建良, 刘建锋, 张茹, 等. 单轴压缩条件下花岗岩声发射事件空间分布的分维特征研究[J]. 四川大学学报: 工程科学版, 2010, 42(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201006011.htm

    Pei Jianliang, Liu Jianfeng, Zhang Ru, et al. Fractal study on spatial distribution of acoustic emission events of granite specimens under uniaxial compression[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(6): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201006011.htm
    [50]
    尹贤刚, 李庶林, 唐海燕. 岩石破坏声发射强度分形特征研究[J]. 岩石力学与工程学报, 2005, 24(19): 3512-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519017.htm

    Yin Xiangang, Li Shulin, Tang Haiyan. Study on strength fractal features of acoustic emission in process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3512-3516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200519017.htm
    [51]
    于洋, 冯夏庭, 陈炳瑞, 等. 深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J]. 岩土工程学报, 2017, 39(12): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712005.htm

    Yu Yang, Feng Xiating, Chen Bingrui, et al. Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2173-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712005.htm
    [52]
    刘章军, 李建林. 岩爆综合预测的模糊概率方法[J]. 长江科学院院报, 2007, 24(4): 42-45, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200704012.htm

    Liu Zhangjun, Li Jianlin. Comprehensive prediction method for rock burst based on fuzzy probability theory[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(4): 42-45, 49. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200704012.htm
    [53]
    陈秀铜, 李璐. 基于AHP-FUZZY方法的隧道岩爆预测[J]. 煤炭学报, 2008, 33(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200811007.htm

    Chen Xiutong, Li Lu. Prediction of tunnel rock burst based on AHP-FUZZY method[J]. Journal of China Coal Society, 2008, 33(11): 1230-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB200811007.htm
    [54]
    王元汉, 李卧东, 李启光, 等. 岩爆预测的模糊数学综合评判方法[J]. 岩石力学与工程学报, 1998, 17(5): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.002.htm

    Wang Yuanhan, Li Wodong, Lee P K K, et al. Method of fuzzy comprehensive evaluations for rockburst prediction[J]. Chinese Journal of Geotechnical Engineering, 1998, 17(05): 493-501. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX805.002.htm
    [55]
    王发芝, 汪令辉, 谢学斌. 模糊灰关联模式识别方法在岩爆预测中的应用[J]. 金属矿山, 2009, 39(5): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200905054.htm

    Wang Fazhi, Wang Linghui, Xie Xuebin. Application of fuzzy grey incidence pattern recognition method in rockburst prediction[J]. Metal Mine, 2009, 39(5): 172-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200905054.htm
    [56]
    李长洪, 张立新, 张磊, 等. 灰色突变理论及声发射在岩爆预测中的应用[J]. 中国矿业, 2008, 17(8): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200808031.htm

    Li Changhong, Zhang Lixin, Zhang Lei, et al. Application of grey catastrophe theory and acoustic emission in rock burst prediction[J]. China Mining Magazine, 2008, 17(8): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA200808031.htm
    [57]
    左宇军, 李夕兵, 马春德, 等. 动静组合载荷作用下岩石失稳破坏的突变理论模型与试验研究[J]. 岩石力学与工程学报, 2005, 24(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200505001.htm

    Zuo Yujun, Li Xibing, Ma Chunde, et al. Catastrophic model and testing study on failure of static loading rock system under dynamic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200505001.htm
    [58]
    潘一山, 章梦涛, 李国臻. 洞室岩爆的尖角型突变模型[J]. 应用数学和力学, 1994, 15(10): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.006.htm

    Pan Yishan, Zhang Mengtao, Li Guozhen. The study of chamber rockburst by the CUSP model of catastrophe theory[J]. Applied Mathematics and Mechanics, 1994, 15(10): 893-900. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX410.006.htm
    [59]
    费鸿禄, 徐小荷, 唐春安. 地下硐室岩爆的突变理论研究[J]. 煤炭学报, 1995, 20(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.005.htm

    Fei Honglu, Xu Xiaohe, Tang Chunan. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 1995, 20(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB501.005.htm
    [60]
    徐曾和, 徐小荷, 唐春安. 坚硬顶板下煤柱岩爆的尖点突变理论分析[J]. 煤炭学报, 1995, 20(5): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB505.006.htm

    Xu Zenghe, Xu Xiaohe, Tang Chunan. Theoretical analysis of a cusp catastrophe bump of coal pillar under hard rocks[J]. Journal of China Coal Society, 1995, 20(5): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB505.006.htm
    [61]
    孔祥松, 单仁亮, 肖禹航, 等. 钢管混凝土支架作用下南关矿煤巷变形破坏规律[J]. 矿业科学学报, 2020, 5(2): 160-168. http://kykxxb.cumtb.edu.cn/article/id/276

    Kong Xiangsong, Shan Renliang, Xiao Yuhang, et al. Deformation and failure law of coal roadway supported by concrete filled steel tube supports in Nanguan mine[J]. Journal of Mining Science and Technology, 2020, 5(2): 160-168. http://kykxxb.cumtb.edu.cn/article/id/276
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (515) PDF downloads(124) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return