Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Lü Zhengye, Zhang Tong, Liu Ze, Wang Qunying, Wang Dongmin. Research on thermal stability of coal gasification coarse slag based geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 595-603. doi: 10.19606/j.cnki.jmst.2022.05.010
Citation: Lü Zhengye, Zhang Tong, Liu Ze, Wang Qunying, Wang Dongmin. Research on thermal stability of coal gasification coarse slag based geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 595-603. doi: 10.19606/j.cnki.jmst.2022.05.010

Research on thermal stability of coal gasification coarse slag based geopolymer

doi: 10.19606/j.cnki.jmst.2022.05.010
  • Received Date: 2022-06-02
  • Rev Recd Date: 2022-06-18
  • Publish Date: 2022-10-31
  • Coal gasification crude slag can be used as a precursor to prepare geopolymer, and its high temperature resistance needs to be further explored. In this paper, geopolymers prepared by mixing 10% of TiO2, 30% of fly ash and 30% of slag in coal gasification crude slag were treated at high temperature, and the thermal stability of four 28d geopolymers at different temperatures was explored. The results show that at 100 ℃, the compressive strength of the sample is not much different from that at room temperature. At 200 ℃, 400 ℃ and 800 ℃, the compressive strengths of the four samples all decreased to different degrees. The strength attenuation is most obvious in the samples doped with mineral powder, and the strength attenuation of the samples doped with TiO2 is smaller at high temperature. With the increase of temperature, the geopolymers cracked: at 100 ℃ and 200 ℃, only the coal gasification coarse slag geopolymers cracked; at 400 ℃, the geopolymers only mixed with TiO2 did not crack; at 800 ℃, all geopolymers cracked. Geopolymers doped with TiO2 have better high temperature resistance due to the anatase content.
  • loading
  • [1]
    商晓甫, 马建立, 张剑, 等. 煤气化炉渣研究现状及利用技术展望[J]. 环境工程技术学报, 2017, 7(6): 712-717. doi: 10.3969/j.issn.1674-991X.2017.06.098

    Shang Xiaofu, Ma Jianli, Zhang Jian, et al. Research status and prospects of utilization technologies of slag from coal gasification[J]. Journal of Environmental Engineering Technology, 2017, 7(6): 712-71. doi: 10.3969/j.issn.1674-991X.2017.06.098
    [2]
    高继光, 马银亮, 刘锐杰. 水煤浆气化灰渣综合利用和效益分析[J]. 节能与环保, 2014(2): 72-73. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJN201402025.htm

    Gao Jiguang, Ma Yinliang, Liu Ruijie. Comprehensive utilization and benefit analysis of coal-water slurry gasification ash and slag[J]. Energy Conservation and Environmental Protection, 2014(2): 72-73. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJN201402025.htm
    [3]
    曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202001021.htm

    Qu Jiangshan, Zhang Jianbo, Sun Zhigang, et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology, 2020, 26(1): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS202001021.htm
    [4]
    Li P, Yu Q B, Qin Q, et al. Kinetics of CO2/coal gasification in molten blast furnace slag[J]. Industrial & Engineering Chemistry Research, 2012, 51(49): 15872-15883.
    [5]
    Milenkova K S, Borrego A G, Alvarez D, et al. Devolatilization behavior of petroleum coke under pulverized fuel combustion conditions[J]. Fuel, 2003, 82(15/16/17): 1883-1891.
    [6]
    Legin-Kolar M, Rađenović A, Ugarković D. Changes in structural parameters of different cokes during heat treatment to 2400℃[J]. Fuel, 1999, 78(13): 1599-1605. doi: 10.1016/S0016-2361(99)00083-6
    [7]
    彭玉清, 郭荣鑫, 林志伟, 等. 粉煤灰地聚合物力学性能影响因素研究综述[J]. 硅酸盐通报, 2021, 40(3): 858-866. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103019.htm

    Peng Yuqing, Guo Rongxin, Lin Zhiwei, et al. Review on influencing factors of mechanical properties of fly ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 858-866. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103019.htm
    [8]
    赵献辉, 王浩宇, 周博宇, 等. 粉煤灰基地聚物的性能影响因素及其凝胶产物研究进展[J]. 硅酸盐通报, 2021, 40(3): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103020.htm

    Zhao Xianhui, Wang Haoyu, Zhou Boyu, et al. Research development on influencing factors of performances and gel products in fly ash-based geopolymer material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103020.htm
    [9]
    荆锐, 刘宇, 张慧杰, 等. 偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间及早期力学性能的影响[J]. 硅酸盐通报, 2020, 39(10): 3237-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202010026.htm

    Jing Rui, Liu Yu, Zhang Huijie, et al. Influences of metakaolin and fly ash on setting time and early age mechanical properties of alkali-activated slag composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(10): 3237-3243. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202010026.htm
    [10]
    刘泽, 周瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6): 1830-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201706004.htm

    Liu Ze, Zhou Yu, Kong Fanlong, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1830-1834. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201706004.htm
    [11]
    张立恒, 陈佩圆, 谭伟博, 等. Na2SiO3/Na2CO3复合制备清洁型碱矿渣胶凝材料[J]. 硅酸盐通报, 2022, 41(1): 235-240, 276. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202201028.htm

    Zhang Liheng, Chen Peiyuan, Tan Weibo, et al. Preparation of clean alkali-activated slag cementitious material by combined activator of Na2SiO3/Na2CO3 [J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 235-240, 276. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202201028.htm
    [12]
    王菲, 刘泽, 韩乐, 等. 活化煤矸石地质聚合物的制备与性能研究[J]. 硅酸盐通报, 2021, 40(3): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103026.htm

    Wang Fei, Liu Ze, Han Le, et al. Preparation and properties of activated coal gangue geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2019, 40(3): 914-920. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202103026.htm
    [13]
    Mudgal M, Singh Aa, Chouhan R K, et al. Fly ash red mud geopolymer with improved mechanical strength[J]. Cleaner Engineering and Technology, 2021, 4: 100215. doi: 10.1016/j.clet.2021.100215
    [14]
    Davidovits J. Geopolymers: Inorganic polymeric new materials[J]. Thermal Analysis, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
    [15]
    Palomo A, Grutzeck M W, Blanco M T. Alkali-activated fly ashes: a cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. doi: 10.1016/S0008-8846(98)00243-9
    [16]
    张彤, 刘泽, 苏壮飞, 等. TiO2改性煤气化粗渣基地质聚合物的微观结构与性能[J]. 硅酸盐通报, 2022, 41(2): 520-525, 535. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202202018.htm

    Zhang Tong, Liu Ze, Su Zhuangfei, et al. Microstructure and properties of TiO2 modified gasification coarse slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 520-525, 535. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202202018.htm
    [17]
    张彤. 碱激发气化粗渣地质聚合物工艺及其微观结构[D]. 北京: 中国矿业大学(北京), 2022.
    [18]
    Hassan A, Arif M, Shariq M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete[J]. SN Applied Sciences, 2019, 1(12) : 1-9.
    [19]
    Inada M, Eguchi Y, Enomoto N, et al. Synthesis of zeolite from coal fly ashes with different silica-alumina composition[J]. Fuel, 2005, 84(2/3) : 299-304.
    [20]
    Palomo A, Blanco-Varela M T, Granizo M L, et al. Chemical stability of cementitious materials based on metakaolin[J]. Cement and Concrete Research, 1999, 29(7): 997-1004. doi: 10.1016/S0008-8846(99)00074-5
    [21]
    Huang Y, Han M. The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products[J]. Journal of Hazardous Materials, 2011, 193: 90-94. doi: 10.1016/j.jhazmat.2011.07.029
    [22]
    Swanepoel J C, Strydom C A. Utilisation of fly ash in a geopolymeric material[J]. Applied Geochemistry, 2002, 17(8): 1143-1148. doi: 10.1016/S0883-2927(02)00005-7
    [23]
    Lee W K W, van Deventer J S J. The effects of inorganic salt contamination on the strength and durability of geopolymers[J]. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 2002, 211(2/3): 115-126.
    [24]
    Cornell R M, Schwertmann U, Cornell R, et al. The iron oxides: structure, properties, reactions, occurrences and uses[J]. Mineralogical Magazine, 2003, 34(408): 740-741.
    [25]
    Irfan Khan M, Azizli K, Sufian S, et al. Sodium silicate-free geopolymers as coating materials: Effects of Na/Al and water/solid ratios on adhesion strength[J]. Ceramics International, 2015, 41(2): 2794-2805. doi: 10.1016/j.ceramint.2014.10.099
    [26]
    Gao K, Lin K L, Wang D Y, et al. Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers[J]. Construction & Building Materials, 2014, 53: 503-510.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (328) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return