Volume 7 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
Guo Xiaolu, Li Shuhao. Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004
Citation: Guo Xiaolu, Li Shuhao. Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer[J]. Journal of Mining Science and Technology, 2022, 7(5): 538-543. doi: 10.19606/j.cnki.jmst.2022.05.004

Mechanical anisotropy and interlayer bonding strength of 3D printing geopolymer

doi: 10.19606/j.cnki.jmst.2022.05.004
  • Received Date: 2022-02-24
  • Rev Recd Date: 2022-03-29
  • Publish Date: 2022-10-31
  • 3D printing geopolymer is a new type of building way and material with both of resource utilization and intelligent building. The mechanical properties in all directions and the bonding strength between layers of components are important factors affecting the constructability and durability of buildings.3D printing geopolymer mortar was prepared with fly ash and quartz sand as main raw materials, anhydrous sodium silicate as alkali activator, slag powder as auxiliary cementitious material, magnesium aluminum silicate as special additive. The 3D printing component of fly ash-based geopolymer was prepared under the condition of the optimum dosage and proportion. The interlayer bonding strength and tensile strength were studied, and the mechanical anisotropy properties were characterized by mechanical properties and ultrasonic pulse velocity.
  • loading
  • [1]
    张超, 邓智聪, 马蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202106002.htm

    Zhang Chao, Deng Zhicong, Ma Lei, et al. Research progress and application of 3D printing concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1769-1795. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202106002.htm
    [2]
    Hager I, Golonka A, Putanowicz R. 3D printing of buildings and building components as the future of sustainable construction?[J]. Procedia Engineering, 2016, 151: 292-299. doi: 10.1016/j.proeng.2016.07.357
    [3]
    王雨珅, 郝亮, 李正, 等. 3D打印地质聚合物的研究进展和应用探索[J]. 中国建材科技, 2021, 30(3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202103007.htm

    Wang Yushen, Hao Liang, Li Zheng, et al. Research progress and application exploration of 3D printing geopolymer[J]. China Building Materials Science & Technology, 2021, 30(3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202103007.htm
    [4]
    张慧琳, 程磊. 3D打印用地质聚合物配合比的优化试验[J]. 低温建筑技术, 2020, 42(4): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202004009.htm

    Zhang Huilin, Cheng Lei. Optimization tests of geopolymer mixture ratio for 3D printing[J]. Low Temperature Architecture Technology, 2020, 42(4): 35-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW202004009.htm
    [5]
    Tay Y W D, Panda B, Paul S C, et al. 3D printing trends in building and construction industry: a review[J]. Virtual and Physical Prototyping, 2017, 12(3): 261-276. doi: 10.1080/17452759.2017.1326724
    [6]
    Kothman I, Faber N. How 3D printing technology changes the rules of the game[J]. Journal of Manufacturing Technology Management, 2016, 27(7): 932-943. doi: 10.1108/JMTM-01-2016-0010
    [7]
    Bos F, Wolfs R, Ahmed Z, et al. Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing[J]. Virtual and Physical Prototyping, 2016, 11(3): 209-225. doi: 10.1080/17452759.2016.1209867
    [8]
    Le T T, Austin S A, Lim S, et al. Mix design and fresh properties for high-performance printing concrete[J]. Materials and Structures, 2012, 45(8): 1221-1232. doi: 10.1617/s11527-012-9828-z
    [9]
    李福平, 邓春林, 万晶. 3D打印建筑技术与商品混凝土行业展望[J]. 混凝土世界, 2013(3): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201303007.htm

    Li Fuping, Deng Chunlin, Wan Jing. Prospect of 3D printing construction technology and commercial concrete industry[J]. China Concrete, 2013(3): 28-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSJ201303007.htm
    [10]
    Han Y L, Yang Z H, Ding T, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete[J]. Journal of Cleaner Production, 2021, 278: 123884. doi: 10.1016/j.jclepro.2020.123884
    [11]
    Garg A, Vijayaraghavan V, Zhang J, et al. Robust model design for evaluation of power characteristics of the cleaner energy system[J]. Renewable Energy, 2017, 112: 302-313. doi: 10.1016/j.renene.2017.05.041
    [12]
    Kaur M, Singh J, Kaur M. Synthesis of fly ash based geopolymer mortar considering different concentrations and combinations of alkaline activator solution[J]. Ceramics International, 2018, 44(2): 1534-1537. doi: 10.1016/j.ceramint.2017.10.071
    [13]
    Garg A, Li J H, Hou J J, et al. A new computational approach for estimation of wilting point for green infrastructure[J]. Measurement, 2017, 111: 351-358. doi: 10.1016/j.measurement.2017.07.026
    [14]
    Panda B, Paul S C, Hui L J, et al. Additive manufacturing of geopolymer for sustainable built environment[J]. Journal of Cleaner Production, 2017, 167: 281-288. doi: 10.1016/j.jclepro.2017.08.165
    [15]
    Nematollahi B, Xia M, Sanjayan J, et al. Effect of type of fiber on inter-layer bond and flexural strengths of extrusion-based 3D printed geopolymer[J]. Materials Science Forum, 2018, 939: 155-162. doi: 10.4028/www.scientific.net/MSF.939.155
    [16]
    Guo X L, Yang J Y, Xiong G Y. Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer[J]. Cement and Concrete Composites, 2020, 114: 103820. doi: 10.1016/j.cemconcomp.2020.103820
    [17]
    郭晓潞, 杨君奕, 熊归砚. 硅酸镁铝及静置时间对3D打印地聚合物砂浆流变性能的影响[J]. 建筑材料学报, 2022, 25(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202201013.htm

    Guo Xiaolu, Yang Junyi, Xiong Guiyan. Effect of magnesium aluminum silicate and rest time on rheological property of 3D printing geopolymer mortar[J]. Journal of Building Materials, 2022, 25(1): 89-96. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX202201013.htm
    [18]
    Lencis U, Udris A, Korjakins A. Frost influence on the ultrasonic pulse velocity in concrete at early phases of hydration process[J]. Case Studies in Construction Materials, 2021, 15: 00614.
    [19]
    Solís-Carcaño R, Moreno E I. Evaluation of concrete made with crushed limestone aggregate based on ultrasonic pulse velocity[J]. Construction and Building Materials, 2008, 22(6): 1225-1231. doi: 10.1016/j.conbuildmat.2007.01.014
    [20]
    Guo X L, Xiong G Y, Zhang H M. In-situ evaluation of self-healing performance of Engineered Geopolymer Composites (EGC)by ultrasonic method[J]. Materials Letters, 2020, 280: 128546. doi: 10.1016/j.matlet.2020.128546
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (391) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return