Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Ji Xiaodong, Qu Yuanyuan, Fu Shichen, Zhang Minjun, Wu Miao. Path tracking of mining boom road-header using SVD-Unscented Kalman Filtering[J]. Journal of Mining Science and Technology, 2022, 7(3): 354-363. doi: 10.19606/j.cnki.jmst.2022.03.010
Citation: Ji Xiaodong, Qu Yuanyuan, Fu Shichen, Zhang Minjun, Wu Miao. Path tracking of mining boom road-header using SVD-Unscented Kalman Filtering[J]. Journal of Mining Science and Technology, 2022, 7(3): 354-363. doi: 10.19606/j.cnki.jmst.2022.03.010

Path tracking of mining boom road-header using SVD-Unscented Kalman Filtering

doi: 10.19606/j.cnki.jmst.2022.03.010
  • Received Date: 2021-05-24
  • Rev Recd Date: 2021-06-25
  • Publish Date: 2022-06-20
  • Facing the demand of autonomous path correction of the road-header working underground, a control law was designed and simplified based on the position and orientation deviation model of the road-header against its aimed walking trajectory.Reasonable Lyapunov function is constructed to prove the convergence of the position and orientation deviation that resulted from the designed control law.Based on a certain real time position and orientation detection strategy for the road-header, the possible errors exist during posture adjustments are summarized and classified into two parts: one is the main execution error of the road-header and it is presented by the slip rate of tracks; the other is the main observation error and it is identified as the position and orientation measurement errors.This paper proposed to take advantages of the statistical characteristics of these errors, which is obtained by a certain number of experiments or deductions instead of rigorous theoretical analysis.The SVD-unscented Kalman Filtering is used to modify the commands that are given originally by the controller so as to deduce and reduce the influence of process error and observation error in the process of position and orientation adjusting.The simulation results show that the proposed path tracking control strategy can effectively realize the transition of the road-header to the target roadway in limited adjustment period, and the corresponding recommended speeds of the driving wheels vary continuously and stably in the whole process.The negative influence of process error and observation error is effectively weakened by commands modification based on SVD-unscented Kalman Filtering.The obtained moving trajectory of the road-header coincides with the planned path very well during the adjustment, which is of great repeatability.This proves that the proposed strategy is of great potential to be applied experimentally in underground real road heading scenario.
  • loading
  • [1]
    魏景生, 吴淼. 中国现代煤矿掘进机[M]. 北京: 煤炭工业出版社, 2015.
    [2]
    葛世荣. 智能化采煤装备的关键技术[J]. 煤炭科学技术, 2014, 42(9): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201409002.htm

    Ge Shirong. Key technology of intelligent coal mining equipment[J]. Coal Science and Technology, 2014, 42(9): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201409002.htm
    [3]
    王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报, 2018, 43(2): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802001.htm

    Wang Guofa, Wang Hong, Ren Huaiwei, et al. 2025 scenarios and development path of intelligent coal mine[J]. Journal of China Coal Society, 2018, 43(2): 295-305. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802001.htm
    [4]
    杨健健, 张强, 王超, 等. 煤矿掘进机的机器人化研究现状与发展[J]. 煤炭学报, 2020, 45(8): 2995-3005. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008032.htm

    Yang Jianjian, Zhang Qiang, Wang Chao, et al. Status and development of robotization research on roadheader for coal mines[J]. Journal of China Coal Society, 2020, 45(8): 2995-3005. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008032.htm
    [5]
    李岩, 杨向东, 陈恳. 履带式移动机器人动力学模型及其反馈控制[J]. 清华大学学报: 自然科学版, 2006, 46(8): 1377-1380. doi: 10.3321/j.issn:1000-0054.2006.08.010

    Li Yan, Yang Xiangdong, Chen Ken. Dynamics model and feedback control of tracked robots[J]. Journal of Tsinghua University: Science and Technology, 2006, 46(8): 1377-1380. doi: 10.3321/j.issn:1000-0054.2006.08.010
    [6]
    李岩, 杨向东, 陈恳. 基于滑动操作模型的履带机器人驱动力设计[J]. 机械设计与制造, 2006(7): 119-121. doi: 10.3969/j.issn.1001-3997.2006.07.055

    Li Yan, Yang Xiangdong, Chen Ken. Tractive force design of tracked robot based on skip-steering model[J]. Machinery Design & Manufacture, 2006(7): 119-121. doi: 10.3969/j.issn.1001-3997.2006.07.055
    [7]
    Le A T, Rye D C, Durrant-Whyte H F. Estimation of track-soil interactions for autonomous tracked vehicles[C]// Proceedings of International Conference on Robotics and Automation. April 25-25, 1997, Albuquerque, NM, USA. IEEE, 1997: 1388-1393.
    [8]
    Wang X, Taghia J, Katupitiya J. Robust model predictive control for path tracking of a tracked vehicle with a steerable trailer in the presence of slip[J]. IFAC-PapersOnLine, 2016, 49(16): 469-474. doi: 10.1016/j.ifacol.2016.10.085
    [9]
    Lenain R, Thuilot B, Cariou C, et al. High accuracy path tracking for vehicles in presence of sliding: application to farm vehicle automatic guidance for agricultural tasks[J]. Autonomous Robots, 2006, 21(1): 79-97. doi: 10.1007/s10514-006-7806-4
    [10]
    Burke M. Path-following control of a velocity constrained tracked vehicle incorporating adaptive slip estimation[C]//. 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA. IEEE, 2012: 97-102.
    [11]
    符世琛, 李一鸣, 杨健健, 等. 基于超宽带技术的掘进机自主定位定向方法研究[J]. 煤炭学报, 2015, 40(11): 2603-2610. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201511016.htm

    Fu Shichen, Li Yiming, Yang Jianjian, et al. Research on autonomous positioning and orientation method of roadheader based on Ultra Wide-Band technology[J]. Journal of China Coal Society, 2015, 40(11): 2603-2610. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201511016.htm
    [12]
    王福忠, 张利敏. 无人值守掘进机行走双模态模糊控制策略[J]. 工矿自动化, 2013, 39(11): 28-31. doi: 10.7526/j.issn.1671-251X.2013.11.008

    Wang Fuzhong, Zhang Limin. Dual-modality fuzzy control strategy of walking of unattended roadheader[J]. Industry and Mine Automation, 2013, 39(11): 28-31. doi: 10.7526/j.issn.1671-251X.2013.11.008
    [13]
    张敏骏, 蔡岫航, 吕馥言, 等. 受限巷道空间区域栅格化掘进机自主纠偏研究[J]. 仪器仪表学报, 2018, 39(3): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201803008.htm

    Zhang Minjun, Cai Xiuhang, Lu Fuyan, et al. Research on roadheader auto rectification in limited roadway space based on regional grid[J]. Chinese Journal of Scientific Instrument, 2018, 39(3): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201803008.htm
    [14]
    张旭辉, 赵建勋, 杨文娟, 等. 悬臂式掘进机视觉导航与定向掘进控制技术[J]. 煤炭学报, 2021, 46(7): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202107014.htm

    Zhang Xuhui, Zhao Jianxun, Yang Wenjuan, et al. Vision-based navigation and directional heading control technologies of boom-type roadheader[J]. Journal of China Coal Society, 2021, 46(7): 2186-2196. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202107014.htm
    [15]
    薛光辉, 张云飞, 候称心, 等. 基于激光靶向跟踪的掘进机位姿测量方法[J]. 矿业科学学报, 2020, 5(4): 416-422. http://kykxxb.cumtb.edu.cn/article/id/306

    Xue Guanghui, Zhang Yunfei, Hou Chenxin, et al. Measurement of roadheader position and posture based on laser target tracking[J]. Journal of Mining Science and Technology, 2020, 5(4): 416-422. http://kykxxb.cumtb.edu.cn/article/id/306
    [16]
    符世琛, 李一鸣, 宗凯, 等. 面向掘进机的超宽带位姿检测系统精度分析[J]. 仪器仪表学报, 2017, 38(8): 1978-1987. doi: 10.3969/j.issn.0254-3087.2017.08.016

    Fu Shichen, Li Yiming, Zong Kai, et al. Accuracy analysis of UWB pose detection system for roadheader[J]. Chinese Journal of Scientific Instrument, 2017, 38(8): 1978-1987. doi: 10.3969/j.issn.0254-3087.2017.08.016
    [17]
    韩庆珏, 刘少军. 深海履带车的路径跟踪控制算法[J]. 中南大学学报: 自然科学版, 2015, 46(2): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201502014.htm

    Han Qingjue, Liu Shaojun. Path tracking control algorithm of the deep sea tracked vehicle[J]. Journal of Central South University: Science and Technology, 2015, 46(2): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201502014.htm
    [18]
    吴卫国, 陈辉堂, 王月娟. 移动机器人的全局轨迹跟踪控制[J]. 自动化学报, 2001, 27(3): 326-331. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200103007.htm

    Wu Weiguo, Chen Huitang, Wang Yuejuan. Global trajectory tracking control of mobile robots[J]. Acta Automatica Sinica, 2001, 27(3): 326-331. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO200103007.htm
    [19]
    瞿圆媛, 宋林珂, 吉晓冬, 等. 井下掘进机行进纠偏调度规划与控制研究[J]. 矿业科学学报, 2020, 5(2): 194-202. http://kykxxb.cumtb.edu.cn/article/id/280

    Qu Yuanyuan, Song Linke, Ji Xiaodong, et al. Study on path planning and tracking of the underground mining road-header[J]. Journal of Mining Science and Technology, 2020, 5(2): 194-202. http://kykxxb.cumtb.edu.cn/article/id/280
    [20]
    韩庆珏. 深海履带式集矿机打滑及路径跟踪控制问题研究[D]. 长沙: 中南大学, 2014.
    [21]
    Zhou B. Nonlinear estimation methods for autonomous tracked vehicle with slip[J]. Chinese Journal of Mechanical Engineering: English Edition, 2007, 20(4): 1-7. doi: 10.3901/CJME.2007.04.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (376) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return