Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Yang Baogui, Yang Haigang. Experimental study on the energy evolution characteristics of high-concentration cemented backfill in coal mine[J]. Journal of Mining Science and Technology, 2022, 7(3): 304-312. doi: 10.19606/j.cnki.jmst.2022.03.005
Citation: Yang Baogui, Yang Haigang. Experimental study on the energy evolution characteristics of high-concentration cemented backfill in coal mine[J]. Journal of Mining Science and Technology, 2022, 7(3): 304-312. doi: 10.19606/j.cnki.jmst.2022.03.005

Experimental study on the energy evolution characteristics of high-concentration cemented backfill in coal mine

doi: 10.19606/j.cnki.jmst.2022.03.005
  • Received Date: 2021-08-26
  • Rev Recd Date: 2021-12-01
  • Publish Date: 2022-06-20
  • In order to study the energy evolution characteristics of high concentration cemented backfill in coal mine, conventional triaxial compression tests of high-concentration cemented backfill under different confining pressures were carried out with the help of RTR-2000 triaxial dynamic test system for high pressure rocks.This paper analyzed the evolution law of the strain energy and the confining pressure effect during the deformation and failure of the specimens.The results show that: (1) for the specimen whose confining pressure is not 0, the ratio of dissipated strain energy corresponding to peak strength to absorbed strain energy is more than 70 %. Before the specimens reached the peak strength, they have undergone severe plastic deformation and failure.(2) in the process of deformation and failure of specimens, the absorbed strain energy increases rapidly, the elastic strain energy accumulates first and then releases, reaching the energy storage limit at peak strength, and the dissipated strain energy begins to increase rapidly from the stage of yield deformation.(3) under the condition of the same axial strain, the larger the confining pressure is, the larger the absorbed strain energy and elastic strain energy of the specimens are.The dissipated strain energy of the specimen with high confining pressure will exceed that of the specimen with low confining pressure as the axial strain increases.The confining pressure can greatly improve the stress level of the specimens, limit the radial deformation of the specimens, improve the energy storage capacity of the specimens, and restrain the deformation and failure of the specimens.
  • loading
  • [1]
    杨宝贵. 煤矿高浓度胶结充填开采技术[M]. 北京: 煤炭工业出版社, 2015.
    [2]
    郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究[J]. 岩石力学与工程学报, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm

    Guo Jiaqi, Liu Xiliang, Qiao Chunsheng. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201402011.htm
    [3]
    王超圣, 周宏伟, 裴浩, 等. 甘肃北山地区花岗岩破坏过程能量聚集和耗散特征研究[J]. 矿业科学学报, 2018, 3(6): 536-542. http://kykxxb.cumtb.edu.cn/article/id/182

    Wang Chaosheng, Zhou Hongwei, Pei Hao, et al. Study on energy concentration and dissipation of Beishan granite in Gansu during failure process[J]. Journal of Mining Science and Technology, 2018, 3(6): 536-542. http://kykxxb.cumtb.edu.cn/article/id/182
    [4]
    张志镇, 高峰. 3种岩石能量演化特征的试验研究[J]. 中国矿业大学学报, 2015, 44(3): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    Zhang Zhizhen, Gao Feng. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process[J]. Journal of China University of Mining & Technology, 2015, 44(3): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm
    [5]
    张志镇, 高峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报, 2015, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501001.htm

    Zhang Zhizhen, Gao Feng. Confining pressure effect on rock energy[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501001.htm
    [6]
    程虹铭, 杨小彬, 刘隽嘉, 等. 基于损伤演化的砂岩能量参数围压效应研究[J]. 矿业科学学报, 2020, 5(3): 249-256. http://kykxxb.cumtb.edu.cn/article/id/286

    Cheng Hongming, Yang Xiaobin, Liu Junjia, et al. Confining pressure effect on energy parameters of sandstones based on damage evolution[J]. Journal of Mining Science and Technology, 2020, 5(3): 249-256. http://kykxxb.cumtb.edu.cn/article/id/286
    [7]
    张黎明, 高速, 任明远, 等. 岩石加荷破坏弹性能和耗散能演化特性[J]. 煤炭学报, 2014, 39(7): 1238-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201407007.htm

    Zhang Liming, Gao Su, Ren Mingyuan, et al. Rock elastic strain energy and dissipation strain energy evolution characteristics under conventional triaxial compression[J]. Journal of China Coal Society, 2014, 39(7): 1238-1242. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201407007.htm
    [8]
    杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    Yang Guoliang, Bi Jingjiu, Zhang Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [9]
    许江, 严召松, 彭守建, 等. 岩石渐进性破坏过程中变形和能量分析[J]. 矿业研究与开发, 2019, 39(8): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201908010.htm

    Xu Jiang, Yan Zhaosong, Peng Shoujian, et al. Deformation and energy analysis in progressive failure of rock[J]. Mining Research and Development, 2019, 39(8): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201908010.htm
    [10]
    温韬, 唐辉明, 刘佑荣, 等. 不同围压下板岩三轴压缩过程能量及损伤分析[J]. 煤田地质与勘探, 2016, 44(3): 80-86. doi: 10.3969/j.issn.1001-1986.2016.03.015

    Wen Tao, Tang Huiming, Liu Yourong, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures[J]. Coal Geology and Exploration, 2016, 44(3): 80-86. doi: 10.3969/j.issn.1001-1986.2016.03.015
    [11]
    田勇, 俞然刚. 不同围压下灰岩三轴压缩过程能量分析[J]. 岩土力学, 2014, 35(1): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401018.htm

    Tian Yong, Yu Rangang. Energy analysis of limestone during triaxial compression under different confining pressures[J]. Rock and Soil Mechanics, 2014, 35(1): 118-129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401018.htm
    [12]
    李毅, 程桦, 张亮亮. 不同围压下C60混凝土三轴压缩过程能量分析[J]. 应用力学学报, 2020, 37(5): 2086-2093, 2326. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202005034.htm

    Li Yi, Cheng Hua, Zhang Liangliang. Energy analysis of C60 concrete under triaxial compression under different confining pressures[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 2086-2093, 2326. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202005034.htm
    [13]
    熊祖强, 刘旭锋, 王成, 等. 高水巷旁充填材料单轴压缩变形破坏与能耗特征分析[J]. 中国安全生产科学技术, 2017, 13(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201701018.htm

    Xiong Zuqiang, Liu Xufeng, Wang Cheng, et al. Analysis on deformation failure and energy consumption characteristics of high-water roadside filling materials under uniaxial compression[J]. Journal of Safety Science and Technology, 2017, 13(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201701018.htm
    [14]
    徐文彬, 宋卫东, 王东旭, 等. 胶结充填体三轴压缩变形破坏及能量耗散特征分析[J]. 岩土力学, 2014, 35(12): 3421-3429. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412011.htm

    Xu Wenbin, Song Weidong, Wang Dongxu, et al. Characteristic analysis of deformation failure and energy dissipation of cemented backfill body under triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(12): 3421-3429. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201412011.htm
    [15]
    徐文彬, 宋卫东, 王东旭, 等. 三轴压缩条件下胶结充填体能量耗散特征分析[J]. 中国矿业大学学报, 2014, 43(5): 808-814. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405008.htm

    Xu Wenbin, Song Weidong, Wang Dongxu, et al. Energy dissipation properties of cement backfill body under triaxial compression conditions[J]. Journal of China University of Mining & Technology, 2014, 43(5): 808-814. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201405008.htm
    [16]
    中华人民共和国住房和城乡建设部. 中华人民共和国推荐性国家标准: 普通混凝土拌合物性能试验方法标准GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2017.
    [17]
    中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 中华人民共和国推荐性国家标准: 混凝土物理力学性能试验方法标准GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2020.
    [18]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    Xie Heping, Ju Yang, Li Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (445) PDF downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return