Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Kang Yiqiang, Zhang Xiang, Jia Wenhao, Zhao Zhiwei, Li Jin, Fang Shizheng. Effects of dip angle and length of open joints on dynamic properties of materials like rock[J]. Journal of Mining Science and Technology, 2022, 7(3): 296-303. doi: 10.19606/j.cnki.jmst.2022.03.004
Citation: Kang Yiqiang, Zhang Xiang, Jia Wenhao, Zhao Zhiwei, Li Jin, Fang Shizheng. Effects of dip angle and length of open joints on dynamic properties of materials like rock[J]. Journal of Mining Science and Technology, 2022, 7(3): 296-303. doi: 10.19606/j.cnki.jmst.2022.03.004

Effects of dip angle and length of open joints on dynamic properties of materials like rock

doi: 10.19606/j.cnki.jmst.2022.03.004
  • Received Date: 2021-04-09
  • Rev Recd Date: 2021-10-11
  • Publish Date: 2022-06-20
  • In order to investigate the influence of tensioned joints on the dynamic mechanical properties of rock-like materials under impact loading, investigated the stress wave propagation characteristics, peak bearing capacity, damage pattern and damage law based on energy theory under dynamic loading for intact specimens and cement mortar specimens containing joints of different angles and lengths with the help of a split Hopkinson compression bar device.The results show that the specimens will be damaged by forming a set of tensile cracking surfaces along the axial direction through the joint surface and a set of cracking surfaces almost parallel to the end face of the specimen.Under the experimental loading rate, when the joint length increases from 5 mm to 30 mm, the more obvious the reflection effect on the wave, the smaller the peak bearing capacity of the specimen, and the smaller the damage.When the joint angle increases from 0° to 90°, the smaller the reflection effect on the stress wave, and the smaller the damage value of the specimen.The peak bearing capacity of the specimen decreases with the increase of the joint angle and then increases.When the joint angle is 60°, the peak bearing capacity of the specimen reaches the minimum, and when the joint angle is 90°, the peak bearing capacity of the specimen reaches the maximum.
  • loading
  • [1]
    Pyrak-Nolte L J. The seismic response of fractures and the interrelations among fracture properties[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(8): 787-802.
    [2]
    Cai J G, Zhao J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(4): 661-682. doi: 10.1016/S1365-1609(00)00013-7
    [3]
    刘丹, 黄曼, 洪陈杰, 等. 基于代表性取样的节理岩体抗压强度尺寸效应试验研究[J]. 岩石力学与工程学报, 2021, 40(4): 766-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm

    Liu Dan, Huang Man, Hong Chenjie, et al. Experimental study on size effect of compressive strength of jointed rock mass based on representative sampling[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 766-776. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104010.htm
    [4]
    武宇, 刘殿书, 吴帅峰, 等. 砂岩冲击损伤与应力波参数关系试验研究[J]. 矿业科学学报, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142

    Wu Yu, Liu Dianshu, Wu Shuaifeng, et al. Experimental study on relationship between impact damage of sandstone and stress wave parameters[J]. Journal of Mining Science and Technology, 2018, 3(3): 229-237. http://kykxxb.cumtb.edu.cn/article/id/142
    [5]
    周喆, 张亮, 侯恒军. 填充对节理岩体力学特性及能量演化的影响研究[J]. 水利水电技术, 2020, 51(7): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202007015.htm

    Zhou Zhe, Zhang Liang, Hou Hengjun. Study on impact from filling on mechanical properties and energy evolution of jointed rock mass[J]. Water Resources and Hydropower Engineering, 2020, 51(7): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ202007015.htm
    [6]
    钟助. 裂隙岩体边坡岩桥破坏机制及稳定性研究[D]. 重庆: 重庆大学, 2019.
    [7]
    王培涛, 黄正均, 任奋华, 等. 基于3D打印的含复杂节理岩石直剪特性及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001007.htm

    Wang Peitao, Huang Zhengjun, Ren Fenhua, et al. Study on direct shear characteristics and failure mechanism of rock with complex joints based on 3D printing[J]. Rock and Soil Mechanics, 2020, 41(1): 46-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001007.htm
    [8]
    陈淼. 断续节理岩体破坏力学特性及锚固控制机理研究[D]. 徐州: 中国矿业大学, 2019.
    [9]
    凌天龙, 刘殿书, 梁书锋, 等. 花岗岩损伤型黏弹性动态本构模型研究[J]. 矿业科学学报, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239

    Ling Tianlong, Liu Dianshu, Liang Shufeng, et al. Research on damage viscoelastic dynamic constitutive model of granite[J]. Journal of Mining Science and Technology, 2019, 4(5): 403-409. http://kykxxb.cumtb.edu.cn/article/id/239
    [10]
    李胜林, 凌天龙, 张会歌, 等. 早龄期混凝土动态力学性能实验研究[J]. 矿业科学学报, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004

    Li Shenglin, Ling Tianlong, Zhang Huige, et al. Experimental research on dynamic mechanics of early age concrete[J]. Journal of Mining Science and Technology, 2020, 5(5): 502-510. doi: 10.19606/j.cnki.jmst.2020.05.004
    [11]
    李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究[J]. 矿业科学学报, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003

    Li Chengxiao, Zhang Yuantong, An Chen. Study on the dynamic propagation and numerical simulation of mode Ⅰ and mixed mode Ⅰ-Ⅱ cracks in PMMA specimens with unilateral semicircular holes[J]. Journal of Mining Science and Technology, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003
    [12]
    Li J C, Ma G W. Experimental study of stress wave propagation across a filled rock joint[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471-478. doi: 10.1016/j.ijrmms.2008.11.006
    [13]
    刘红岩, 邓正定, 王新生, 等. 节理岩体动态破坏的SHPB相似材料试验研究[J]. 岩土力学, 2014, 35(3): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403009.htm

    Liu Hongyan, Deng Zhengding, Wang Xinsheng, et al. Similar material test study of dynamic failure of jointed rock mass with SHPB[J]. Rock and Soil Mechanics, 2014, 35(3): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403009.htm
    [14]
    杨仁树, 王茂源, 杨阳, 等. 充填材料对节理岩石动力学性能影响的模拟试验[J]. 振动与冲击, 2016, 35(12): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201612019.htm

    Yang Renshu, Wang Maoyuan, Yang Yang, et al. Simulation material experiment on the dynamic mechanical properties of jointed rock affected by joint-filling material[J]. Journal of Vibration and Shock, 2016, 35(12): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201612019.htm
    [15]
    鞠杨, 李业学, 谢和平, 等. 节理岩石的应力波动与能量耗散[J]. 岩石力学与工程学报, 2006, 25(12): 2426-2434. doi: 10.3321/j.issn:1000-6915.2006.12.007

    Ju Yang, Li Yexue, Xie Heping, et al. Stress wave propagation and energy dissipation in jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(12): 2426-2434. doi: 10.3321/j.issn:1000-6915.2006.12.007
    [16]
    李祥龙, 王建国, 张智宇, 等. 应变率及节理倾角对岩石模拟材料动力特性的影响[J]. 爆炸与冲击, 2016, 36(4): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201604007.htm

    Li Xianglong, Wang Jianguo, Zhang Zhiyu, et al. Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials[J]. Explosion and Shock Waves, 2016, 36(4): 483-490. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201604007.htm
    [17]
    杨阳, 杨仁树, 王建国. 节理厚度对岩石动力特性影响的模拟试验[J]. 中国矿业大学学报, 2016, 45(2): 211-216, 309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201602003.htm

    Yang Yang, Yang Renshu, Wang Jianguo. Simulation material experiment on dynamic mechanical properties of jointed rock affected by joint thickness[J]. Journal of China University of Mining & Technology, 2016, 45(2): 211-216, 309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201602003.htm
    [18]
    张伟, 周国庆, 张海波, 等. 倾角对裂隙岩体力学特性影响试验模拟研究[J]. 中国矿业大学学报, 2009, 38(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200901008.htm

    Zhang Wei, Zhou Guoqing, Zhang Haibo, et al. Experimental research on the influence of obliquity on the mechanical characteristics of a fractured rock mass[J]. Journal of China University of Mining & Technology, 2009, 38(1): 30-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200901008.htm
    [19]
    王建国, 高全臣, 陆华, 等. 分层介质冲击响应的SHPB实验研究[J]. 振动与冲击, 2015, 34(19): 192-197, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201519031.htm

    Wang Jianguo, Gao Quanchen, Lu Hua, et al. Impact response tests of layered medium with SHPB[J]. Journal of Vibration and Shock, 2015, 34(19): 192-197, 212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201519031.htm
    [20]
    王建国, 梁书锋, 高全臣, 等. 节理倾角对类岩石冲击能量传递影响的试验研究[J]. 中南大学学报: 自然科学版, 2018, 49(5): 1237-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201805027.htm

    Wang Jianguo, Liang Shufeng, Gao Quanchen, et al. Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J]. Journal of Central South University: Science and Technology, 2018, 49(5): 1237-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201805027.htm
    [21]
    杨国梁, 毕京九, 张志飞, 等. 被动围压下层理角度对页岩动态强度及耗能的影响[J]. 矿业科学学报, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006

    Yang Guoliang, Bi Jingjiu, Zhang Zhifei, et al. The influence of the bedding angle under passive confining pressure on the dynamic strength and energy consumption of shale[J]. Journal of Mining Science and Technology, 2021, 6(2): 188-195. doi: 10.19606/j.cnki.jmst.2021.02.006
    [22]
    王卫华, 李夕兵, 周子龙, 等. 不同应力波在张开节理处的能量传递规律[J]. 中南大学学报: 自然科学版, 2006, 37(2): 376-380. doi: 10.3969/j.issn.1672-7207.2006.02.032

    Wang Weihua, Li Xibing, Zhou Zilong, et al. Energy-transmitted rule of various stress waves across open joint[J]. Journal of Central South University: Science and Technology, 2006, 37(2): 376-380. doi: 10.3969/j.issn.1672-7207.2006.02.032
    [23]
    Fourney W L, Dick R D, Fordyce D F, et al. Effects of open gaps on particle velocity measurements[J]. Rock Mechanics and Rock Engineering, 1997, 30(2): 95-111. doi: 10.1007/BF01020127
    [24]
    Wu Y K, Hao H, Zhou Y X, et al. Propagation characteristics of blast-induced shock waves in a jointed rock mass[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(6): 407-412. doi: 10.1016/S0267-7261(98)00030-X
    [25]
    Shan R L, Jiang Y S, Li B Q. Obtaining dynamic complete stress-strain curves for rock using the Split Hopkinson Pressure Bar technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983-992.
    [26]
    Frew D J, Forrestal M J, Chen W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41(1): 40-46.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (462) PDF downloads(47) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return