Volume 7 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
Che Yuyan, Zou Guangui, Yin Caiyun, Zeng Hu, She Jiasheng. The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield[J]. Journal of Mining Science and Technology, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002
Citation: Che Yuyan, Zou Guangui, Yin Caiyun, Zeng Hu, She Jiasheng. The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield[J]. Journal of Mining Science and Technology, 2022, 7(3): 275-285. doi: 10.19606/j.cnki.jmst.2022.03.002

The evolution law of pore characteristics and pore bulk modulus for overpressured coal-bearing formation in Yuwang Minefield

doi: 10.19606/j.cnki.jmst.2022.03.002
  • Received Date: 2021-10-17
  • Rev Recd Date: 2021-11-20
  • Publish Date: 2022-06-20
  • The abnormal high pressure in coal and coalbed methane exploitation will bring danger to exploitation, thus threatening the safety of personnel and property.Six coal samples collected from Yuwang colliery in Yunnan province were analyzed by CT scanning and low-temperature liquid nitrogen adsorption experiment.Analysis reveals the characteristic parameters of pore radius, pore throat radius and pore volume-pore diameter differential distribution of overpressured coal samples.Meanwhile, the pore bulk modulus of overpressured coal samples under different confining pressures is derived based on the mechanism of the Gassmann model.The results show that the porosity of Yuwang colliery overpressured stratum can reach 10 %, and the mesoporous pore shape is mainly spherical and cylindrical.The shear wave velocity of dry coal samples increases nonlinearly with confining pressure.The pore bulk modulus of saturated coal sample remains proportional to confining pressure, but increases rapidly when the water saturation exceeds 90 % with the same confining pressure.
  • loading
  • [1]
    Ren J, Zhang G, Song Z, et al. Comprehensive fractal description of porosity of coal of different ranks[J]. The Scientific World Journal, 2014, 2014: 490318.
    [2]
    何盼情. 马海东及周缘地区Pt-E3g下地层压力特征及超压成因[D]. 西安: 西安石油大学, 2021.
    [3]
    Chilingar G V, Serebryakov V A, Katz S A, et al. Chapter 5 Methods of estimating and predicting abnormal rormation pressures[M]. Amsterdam: Elsevier, Developments in Petroleum Science. 2002: 123-150.
    [4]
    Swarbrick R E, Osborne M J. The nature and diversity of pressure transition zones[J]. Petroleum Geoscience, 1996, 2(2): 111-116. doi: 10.1144/petgeo.2.2.111
    [5]
    马启富. 超压盆地与油气分布[M]. 北京: 地质出版社, 2000.
    [6]
    赵靖舟. 前陆盆地天然气成藏理论及应用[M]. 北京: 石油工业出版社, 2003.
    [7]
    刘晓峰, 解习农. 储层超压流体系统的成因机制述评[J]. 地质科技情报, 2003, 22(3): 55-60. doi: 10.3969/j.issn.1000-7849.2003.03.011

    Liu Xiaofeng, Xie Xinong. Review on formation mechanism of the reservoir overpressure fluid system[J]. Geological Science and Technology Information, 2003, 22(3): 55-60. doi: 10.3969/j.issn.1000-7849.2003.03.011
    [8]
    王鸿升. 异常高地层压力研究现状概述[J]. 油气地球物理, 2015, 13(4): 58-63.

    Wang Hongsheng. Summary of the research status of abnormally high formation pressure[J]. Oil & Gas Geophysics, 2015, 13(4): 58-63.
    [9]
    刘宇坤, 何生, 何治亮, 等. 碳酸盐岩超压岩石物理模拟实验及超压预测理论模型[J]. 石油与天然气地质, 2019, 40(4): 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904004.htm

    Liu Yukun, He Sheng, He Zhiliang, et al. The rock physics modeling experiment under overpressure and theoretical model for overpressure prediction in carbonate rocks[J]. Oil & Gas Geology, 2019, 40(4): 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201904004.htm
    [10]
    王湘平. 随钻地层压力动态监测技术研究: 以东营凹陷为例[D]. 武汉: 中国地质大学, 2014.
    [11]
    于浩. 多变量孔隙压力预测与不确定性分析方法及应用研究[D]. 武汉: 中国地质大学, 2020.
    [12]
    林龙生, 王文文. 基于垂直地震剖面(VSP)的地层压力预测方法研究[J]. 中国石油和化工标准与质量, 2021, 41(11): 1-2. doi: 10.3969/j.issn.1673-4076.2021.11.001

    Lin Longsheng, Wang Wenwen. Research on formation presure pridiction method based on vertical seimic profile(VSP)[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(11): 1-2. doi: 10.3969/j.issn.1673-4076.2021.11.001
    [13]
    孟召平, 章朋, 田永东, 等. 围压下煤储层应力-应变、渗透性与声发射试验分析[J]. 煤炭学报, 2020, 45(7): 2544-2551.

    Meng Zhaoping, Zhang Peng, Tian Yongdong, et al. Experimental analysis of stress-strain, permeability and acoustic emission of coal reservoir under different confining pressures[J]. Journal of China Coal Society, 2020, 45(7): 2544-2551.
    [14]
    李贤庆, 王哲, 郭曼, 等. 黔北地区下古生界页岩气储层孔隙结构特征[J]. 中国矿业大学学报, 2016, 45(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606013.htm

    Li Xianqing, Wang Zhe, Guo Man, et al. Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou[J]. Journal of China University of Mining & Technology, 2016, 45(6): 1172-1183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201606013.htm
    [15]
    宋金星. 煤储层表面改性增产机理及技术研究[D]. 焦作: 河南理工大学, 2016.
    [16]
    王博. 老厂雨旺区块煤储层特征及水力压裂优化设计[D]. 徐州: 中国矿业大学, 2018.
    [17]
    刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展: 以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021, 41(1): 29-41.

    Liu Shugen, Jiao Kun, Zhang Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: an example from the Lower Paleozoic marine shale in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(1): 29-41.
    [18]
    王志战. 沉积盆地异常压力体系及其预监测: 以济阳坳陷为例[D]. 西安: 西北大学, 2006.
    [19]
    鞠玮, 姜波, 秦勇, 等. 多煤层条件下现今地应力特征与煤层气开发[J]. 煤炭学报, 2020, 45(10): 3492-3500.

    Ju Wei, Jiang Bo, Qin Yong, et al. Characteristics of present-day in situ stress field under multi-seam condtions: Implications for coalbed mthane development[J]. Journal of China Coal Society, 2020, 45(10): 3492-3500.
    [20]
    杜栩, 郑洪印, 焦秀琼. 异常压力与油气分布[J]. 地学前缘, 1995(4): 137-148. doi: 10.3321/j.issn:1005-2321.1995.04.002

    Du Xu, Zhen Hongyin, Jiao Xiuqiong. Distribution of abnormal pressure and hydrocarbon[J]. Earth Science Frontiers, 1995(4): 137-148. doi: 10.3321/j.issn:1005-2321.1995.04.002
    [21]
    蒋秀明, 吴财芳, 张二超, 等. 老厂矿区雨汪区块地温-地压系统及其展布特征[J]. 河南理工大学学报: 自然科学版, 2020, 39(2): 32-37.

    Jiang Xiuming, Wu Caifang, Zhang Erchao, et al. Geotemperature-geopressure system and its distribution characteristics of Yuwang block in Laochang mining area[J]. Journal of Henan Polytechnic University: Natural Science, 2020, 39(2): 32-37.
    [22]
    李仲东, 周文, 吴永平. 我国煤层气储层异常压力的成因分析[J]. 矿物岩石, 2004, 24(4): 87-92. doi: 10.3969/j.issn.1001-6872.2004.04.016

    Li Zhongdong, Zhou Wen, Wu Yongping. Genetic analysis on the abnormal pressure of the gas reservoirs in the coal layers in China[J]. Journal of Mineralogy and Petrology, 2004, 24(4): 87-92. doi: 10.3969/j.issn.1001-6872.2004.04.016
    [23]
    杨永明, 鞠杨, 刘红彬, 等. 孔隙结构特征及其对岩石力学性能的影响[J]. 岩石力学与工程学报, 2009, 28(10): 2031-2038. doi: 10.3321/j.issn:1000-6915.2009.10.010

    Yang Yongming, Ju Yang, Liu Hongbin, et al. Influence of porous structure properties on mechanical performances of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2031-2038. doi: 10.3321/j.issn:1000-6915.2009.10.010
    [24]
    董鹏宇. 赵庄井田3号煤孔隙特征研究[J]. 煤, 2021, 30(2): 1-5, 16.

    Dong Pengyu. Study on characteristics of the No. 3 coal pore in Zhaozhuang well-field system[J]. Coal, 2021, 30(2): 1-5, 16.
    [25]
    刘建国. 沁水盆地东南部煤储层孔隙结构及其吸附性能研究[D]. 焦作: 河南理工大学, 2016.
    [26]
    王士路, 张开仲, 杜联营, 等. 构造煤微观孔隙结构形态学特征及定量分析[J]. 西安科技大学学报, 2021, 41(5): 862-871.

    Wang Shilu, Zhang Kaizhong, Du Lianying, et al. Morphological characteristics of microscopic pore structure of tectonic coal and its quantitative analysis[J]. Journal of Xi'an University of Science and Technology, 2021, 41(5): 862-871.
    [27]
    李鹏. 应用等温吸附曲线研究页岩孔隙结构特征[D]. 成都: 成都理工大学, 2016.
    [28]
    武瑾, 王红岩, 拜文华, 等. 渝东南龙马溪组页岩储层特征及吸附影响因素分析[J]. 断块油气田, 2013, 20(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306008.htm

    Wu Jin, Wang Hongyan, Bai Wenhua, et al. Analysis on characteristics of Longmaxi Formation shale reservoir in southeast district of Chongqing and adsorption influence factor[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 713-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201306008.htm
    [29]
    Mavko G, Mukerji T. Seismic pore space compressibility and Gassmann's relation[J]. Geophysics, 1995, 60(6): 1743-1749. doi: 10.1190/1.1443907
    [30]
    王磊, 李克文, 赵楠, 等. 致密油储层孔隙度测定方法[J]. 油气地质与采收率, 2015, 22(4): 49-53. doi: 10.3969/j.issn.1009-9603.2015.04.009

    Wang Lei, Li Kewen, Zhao Nan, et al. Methods research of porosity determination for tight oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4): 49-53. doi: 10.3969/j.issn.1009-9603.2015.04.009
    [31]
    史燕红. 基于Gassmann方程的流体替换[D]. 成都: 成都理工大学, 2009.
    [32]
    徐浩. 基于地质岩石矿物分析测试技术的探讨[J]. 低碳世界, 2016(33): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ201633074.htm

    Xu Hao. Discussion on the analysis and testing technology of geological rocks and minerals[J]. Low Carbon World, 2016(33): 118-119. https://www.cnki.com.cn/Article/CJFDTOTAL-DTSJ201633074.htm
    [33]
    Shitrit O, Hatzor Y H, Feinstein S, et al. Effect of kerogen on rock physics of immature organic-rich chalks[J]. Marine and Petroleum Geology, 2016, 73: 392-404. doi: 10.1016/j.marpetgeo.2016.03.023
    [34]
    叶树刚. 瓦斯含量对煤层物性参数及AVO响应特征的影响研究[J]. 煤矿现代化, 2017(4): 80-82. doi: 10.3969/j.issn.1009-0797.2017.04.031

    Ye Shugang. The study of influence of gas content on physical property parameters and AVO response characteristics of coal seam[J]. Coal Mine Modernization, 2017(4): 80-82. doi: 10.3969/j.issn.1009-0797.2017.04.031
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(9)

    Article Metrics

    Article views (631) PDF downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return