Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Zhao Qiancheng, Su Kaiwen, Qiu Ziliang, Wang Qingyu, Yu Caihong. Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application[J]. Journal of Mining Science and Technology, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013
Citation: Zhao Qiancheng, Su Kaiwen, Qiu Ziliang, Wang Qingyu, Yu Caihong. Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application[J]. Journal of Mining Science and Technology, 2022, 7(2): 247-256. doi: 10.19606/j.cnki.jmst.2022.02.013

Biodegradation characteristics of phenol and quinoline by Alcaligenes faecalis and its immobilization application

doi: 10.19606/j.cnki.jmst.2022.02.013
  • Received Date: 2021-03-04
  • Rev Recd Date: 2021-06-24
  • Publish Date: 2022-04-20
  • The strains that can only degrade phenol or quinoline are limited in practical application. It is more practical to select the tolerant strains which can degrade the compound pollutants. A phenol-quinoline degrading strain KD1 was isolated from activated sludge in a coke-plant wastewater treatment system. KD1 was identified as Alcaligenes faecalis on the basis of morphological characteristics, physiological and biochemical characteristics and the analysis of its 16S rDNA sequence. The optimal degradation conditions showed that strain KD1 had good pH applicability, and the optimal conditions were as follow: inoculation volume 10 %, rotation rate 150 r/min, culture temperature 30 ℃, initial pH value 7.0 respectively. Nitrogen source can affect the degradation of phenol by strain KD1, while strain KD1 can synergistically degrade phenol and quinoline under co-substrate. The degradation reaction of phenol and quinoline can be described with zero order kinetic equation within 700 mg/L phenol and 400 mg/L respectively. The growth kinetics of Strain KD1 could be described with Haldanes inhibition model, and the inhibition concentrations of it were 293 mg/L and 229 mg/L, respectively. The new immobilized carrier prepared by embedding and adsorption can improve the degradation efficiency of co-substrate pollutants.
  • loading
  • [1]
    Zhu H, Han Y X, Ma W C, et al. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW)using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR)[J]. Bioresource Technology, 2017, 245: 786-793. doi: 10.1016/j.biortech.2017.09.029
    [2]
    Shahryari S, Zahiri H S, Haghbeen K, et al. High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity[J]. Ecotoxicology and Environmental Safety, 2018, 164: 455-466. doi: 10.1016/j.ecoenv.2018.08.051
    [3]
    Basak B, Jeon B H, Kurade M B, et al. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor[J]. Ecotoxicology and Environmental Safety, 2019, 180: 317-325. doi: 10.1016/j.ecoenv.2019.05.020
    [4]
    Paisio C E, Talano M A, González P S, et al. Isolation and characterization of a Rhodococcus strain with phenol-degrading ability and its potential use for tannery effluent biotreatment[J]. Environmental Science and Pollution Research, 2012, 19(8): 3430-3439. doi: 10.1007/s11356-012-0870-8
    [5]
    Yi T, Shan Y, Huang B, et al. An efficient Chlorella sp. "Cupriavidus" necator microcosm for phenol degradation and its cooperation mechanism[J]. Science of the Total Environment, 2020, 743: 140775. doi: 10.1016/j.scitotenv.2020.140775
    [6]
    Li C M, Wu H Z, Wang Y X, et al. Enhancement of phenol biodegradation: Metabolic division of labor in co-culture of Stenotrophomonas sp. N5 and Advenella sp. B9[J]. Journal of Hazardous Materials, 2020, 400: 123214. doi: 10.1016/j.jhazmat.2020.123214
    [7]
    Jiang Y, Deng T, Shang Y, et al. Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions[J]. International Biodeterioration & Biodegradation, 2017, 123: 37-45.
    [8]
    Qiao L, Wang J L. Biodegradation characteristics of quinoline by Pseudomonas putida[J]. Bioresource Technology, 2010, 101(19): 7683-7686. doi: 10.1016/j.biortech.2010.05.026
    [9]
    Zhang P, Jia R, Zhang Y, et al. Quinoline-degrading strain Pseudomonas aeruginosa KDQ4 isolated from coking activated sludge is capable of the simultaneous removal of phenol in a dual substrate system[J]. Journal of Environmental Science and Health, Part A, 2016, 51(13): 1139-1148. doi: 10.1080/10934529.2016.1206377
    [10]
    徐伟超, 吴翠平, 张玉秀, 等. 喹啉降解菌Ochrobactrum sp. 的好氧降解特性及其在焦化废水中的生物强化作用[J]. 环境科学, 2017, 38(5): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201705040.htm

    Xu Weichao, Wu Cuiping, Zhang Yuxiu, et al. Aerobic degradation characteristics of the quinoline-degrading strain Ochrobactrum sp. and its bioaugmentation in coking wastewater[J]. Environmental Science, 2017, 38(5): 2030-2035. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201705040.htm
    [11]
    Tuo B H, Yan J B, Fan B A, et al. Biodegradation characteristics and bioaugmentation potential of a novel quinoline-degrading strain of Bacillus sp. isolated from petroleum-contaminated soil[J]. Bioresource Technology, 2012, 107: 55-60. doi: 10.1016/j.biortech.2011.12.114
    [12]
    Wang J L, Quan X C, Han L P, et al. Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii[J]. Water Research, 2002, 36(9): 2288-2296. doi: 10.1016/S0043-1354(01)00457-2
    [13]
    Kurade M B, Waghmode T R, Xiong J Q, et al. Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor[J]. Journal of Cleaner Production, 2019, 213: 884-891. doi: 10.1016/j.jclepro.2018.12.218
    [14]
    Ke Q, Zhang Y G, Wu X L, et al. Sustainable biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers[J]. Journal of Environmental Management, 2018, 222: 185-189.
    [15]
    东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
    [16]
    国家环境保护总局. 水和废水检测分析方法[M]. 北京: 中国环境科学出版社, 2002.
    [17]
    李亚新, 赵晨红. 紫外分光光度法测定焦化废水的主要污染物[J]. 中国给水排水, 2001, 17(1): 54-56. doi: 10.3321/j.issn:1000-4602.2001.01.016

    Li Yaxin, Zhao Chenhong. Determination of main pollutants in coking wastewater by UV spectrophotometry[J]. China Water & Wastewater, 2001, 17(1): 54-56. doi: 10.3321/j.issn:1000-4602.2001.01.016
    [18]
    Wang S J, Loh K C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation[J]. Enzyme and Microbial Technology, 1999, 25(3/4/5): 177-184. http://www.ingentaconnect.com/content/els/01410229/1999/00000025/00000003/art00060
    [19]
    钟卓亚. 微波辅助化学活化制备活性炭的研究[D]. 长沙: 湖南大学, 2012.
    [20]
    李静, 李文英. 喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学, 2015, 36(4): 1385-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201504039.htm

    Li Jing, Li Wenying. Screening of a Highly Efficient Quinoline-degrading Strain and Its Enhanced Biotreatment on Coking Waste Water[J]. Environmental Science, 2015, 36(4): 1385-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201504039.htm
    [21]
    张玉秀, 豆梦楠, 朱康兴, 等. 喹啉降解菌Rhodococcus sp. 的降解特性与生物强化作用[J]. 中国环境科学, 2017, 37(6): 2340-2346. doi: 10.3969/j.issn.1000-6923.2017.06.043

    Zhang Yuxiu, Dou Mengnan, Zhu Kangxing, et al. Bioaugmentation and characteristics of a quinoline-degrading strain Rhodococcus sp. [J]. China Environmental Science, 2017, 37(6): 2340-2346. doi: 10.3969/j.issn.1000-6923.2017.06.043
    [22]
    王培明, 霍明昕, 朱遂一, 等. 低温喹啉降解菌的筛选及降解性能[J]. 环境工程学报, 2013, 7(1): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201301029.htm

    Wang Peiming, Huo Mingxin, Zhu Suiyi, et al. Screening of quinoline-degradation bacteria and their biodegradation capability at low temperature[J]. Chinese Journal of Environmental Engineering, 2013, 7(1): 154-158. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201301029.htm
    [23]
    陈晓华, 魏刚, 刘思远, 等. 高效降酚菌株Ochrobactrum sp. CH10生长动力学和苯酚降解特性的研究[J]. 环境科学, 2012, 33(11): 3956-3961. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201211039.htm

    Chen Xiaohua, Wei Gang, Liu Siyuan, et al. Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10[J]. Environmental Science, 2012, 33(11): 3956-3961. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201211039.htm
    [24]
    Wang Y, Chen H, Liu Y X, et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater[J]. Bioresource Technology, 2016, 211: 711-719. doi: 10.1016/j.biortech.2016.03.149
    [25]
    Li Y, Li J, Wang C, et al. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1[J]. Bioresource Technology, 2010, 101(17): 6740-6744. doi: 10.1016/j.biortech.2010.03.083
    [26]
    陈春, 李文英, 吴静文, 等. 焦化废水中苯酚降解菌筛选及其降解性能[J]. 环境科学, 2012, 33(5): 1652-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205039.htm

    Chen Chun, Li Wenying, Wu Jingwen, et al. Screening and characterization of phenol degrading bacteria for the coking wastewater treatment[J]. Environmental Science, 2012, 33(5): 1652-1656. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201205039.htm
    [27]
    魏霞, 周俊利, 谢柳, 等. 苯酚降解菌CM-HZX1菌株的分离、鉴定及降解性能研究[J]. 环境科学学报, 2016, 36(9): 3193-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201609010.htm

    Wei Xia, Zhou Junli, Xie Liu, et al. Isolation, identification and characterization of phenol-degrading strain CM-HZX1[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3193-3199. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201609010.htm
    [28]
    卫晓博, 侯颖, 程豪杰, 等. 一种苯酚降解菌Pseudoxanthomonas sp. BF-6的分离鉴定及其降解特性、降解途径研究[J]. 生物技术通报, 2021, 37(11): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT202110009.htm

    Wei Xiaobo, Hou Ying, Cheng Haojie, et al. Isolation, Identification of Phenol-degrading Pseudoxanthomonas sp. BF-6 and Its Degradation Characterization and Pathway[J]. Biotechnology Bulletin, 2021, 37(11): 30-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT202110009.htm
    [29]
    周集体, 关晓燕, 曲媛媛, 等. 苯酚降解菌株GXY-1分离鉴定、降解及其粗酶特性研究[J]. 大连理工大学学报, 2010, 50(3): 340-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003007.htm

    Zhou Jiti, Guan Xiaoyan, Qu Yuanyuan, et al. Research on isolation, identification of a phenol-degrading strain GXY-1 and characteristics of its degradation and crude enzyme[J]. Journal of Dalian University of Technology, 2010, 50(3): 340-345. https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG201003007.htm
    [30]
    Kilic N K. Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters[J]. International Biodeterioration & Biodegradation, 2009, 63(6): 778-781. http://www.onacademic.com/detail/journal_1000034018543910_3ae1.html
    [31]
    Zhu S N, Liu D Q, Fan L, et al. Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge[J]. Journal of Hazardous Materials, 2008, 160(2/3): 289-294.
    [32]
    唐春燕, 李巍, 叶秋霞, 等. 恶臭假单胞菌降解苯酚的动力学研究[J]. 环境工程学报, 2011, 5(10): 2364-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201110039.htm

    Tang Chunyan, Li Wei, Ye Qiuxia, et al. Growth kinetics and phenol biodegradation of Pseudomonas putida LY1[J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2364-2368. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201110039.htm
    [33]
    Wang G Y, Wen J P, Yu G H, et al. Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol[J]. World Journal of Microbiology and Biotechnology, 2008, 24(11): 2685-2691. doi: 10.1007/s11274-008-9797-0
    [34]
    葛启隆, 王国英, 岳秀萍. 波茨坦短芽孢杆菌降解苯酚特性及动力学研究[J]. 生物技术通报, 2014(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201403020.htm

    Ge Qilong, Wang Guoying, Yue Xiuping. Phenol degradation by brevibacillus borstelensis and kinetic analysis[J]. Biotechnology Bulletin, 2014(3): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201403020.htm
    [35]
    侯思宇. 喹啉降解菌的筛选及活化条件对喹啉降解速率的影响[D]. 西安: 西安建筑科技大学, 2017.
    [36]
    朱顺妮, 刘冬启, 樊丽, 等. 喹啉降解菌Rhodococcus sp. QL2的分离鉴定及降解特性[J]. 环境科学, 2008, 29(2): 2488-2493. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200802036.htm

    Zhu Shunni, Liu Dongqi, Fan Li, et al. Isolation, identification and degradation characteristics of a quinoline-degrading bacterium Rhodococcus sp. QL2[J]. Environmental Science, 2008, 29(2): 2488-2493. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200802036.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (379) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return