Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Fan Lei, Fan Xingshuai, Zhang Xiancheng, Hu Chun, Ren Qinghai. Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment[J]. Journal of Mining Science and Technology, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011
Citation: Fan Lei, Fan Xingshuai, Zhang Xiancheng, Hu Chun, Ren Qinghai. Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment[J]. Journal of Mining Science and Technology, 2022, 7(2): 233-239. doi: 10.19606/j.cnki.jmst.2022.02.011

Corrosion mechanism of ZTAp-Fe material used in coal transportation equipment

doi: 10.19606/j.cnki.jmst.2022.02.011
  • Received Date: 2021-02-28
  • Rev Recd Date: 2021-08-25
  • Publish Date: 2022-04-20
  • Due to the harsh underground environment, underground coal transportation equipment made of traditional steel materials has a relatively low service life. Through electrochemical test, scanning electron microscope observation, energy spectrum analysis and other tests, the law of corrosion resistance, microstructure and element distribution of ZTAp reinforced iron matrix composites prepared by powder metallurgy is explored, the corrosion resistance mechanism of ZTAp-Fe material is revealed. The results show that ZTAp and the iron matrix are in good bonding state in the ZTAp-Fe materials, and the interface is non-metallurgical bonding. With the introduction of 20 % ZTAp in the iron matrix alloy, the corrosion rate decreased from 0.909 28 mm/a to 0.365 14 mm/a, and the resistance of charge transfer (Rct)increases from 775.6 Ω·cm2 to 1025.3 Ω·cm2. The corrosion resistance of ZTAp is better than that of iron matrix. The formation of corrosion products at the interface effectively inhibits the corrosive medium from further corroding the interface between ZTAp and the iron matrix. ZTAp reinforced iron matrix composites can effectively increase the service life of coal transportation equipment.
  • loading
  • [1]
    方宇生. 1000kW刮板机减速器箱体设计优化研究[D]. 徐州: 中国矿业大学, 2020.
    [2]
    Li J F, Zhu Z C, Peng Y X, et al. Microstructure and wear characteristics of novel Fe-Ni matrix wear-resistant composites on the middle chute of the scraper conveyor[J]. Journal of Materials Research and Technology, 2020, 9(1): 935-947. doi: 10.1016/j.jmrt.2019.11.033
    [3]
    Li J X, Liang S W. Friction and wear of the middle trough in scraper conveyors[J]. Industrial Lubrication and Tribology, 2018, 70(6): 1072-1077. doi: 10.1108/ILT-08-2017-0231
    [4]
    Shi Z Y, Zhu Z C. Case study: Wear analysis of the middle plate of a heavy-load scraper conveyor chute under a range of operating conditions[J]. Wear, 2017, 380/381: 36-41. doi: 10.1016/j.wear.2017.03.005
    [5]
    汪健. 刮板输送机用中锰钢的摩擦腐蚀行为研究[D]. 徐州: 中国矿业大学, 2018.
    [6]
    潘俊艳, 陈华辉, 马峰, 等. 低合金钢在高矿化度矿井水环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201603010.htm

    Pan Junyan, Chen Huahui, Ma Feng, et al. Corrosion behavior of low alloy steels in high-mineralized mine water[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201603010.htm
    [7]
    麻衡, 徐凯, 孙乾. 我国煤机液压支架用高强钢的生产现状与发展趋势[J]. 轧钢, 2020, 37(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG202006018.htm

    Ma Heng, Xu Kai, Sun Qian. Production status and development trend of high strength steel for coal machine hydraulic support in China[J]. Steel Rolling, 2020, 37(6): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGG202006018.htm
    [8]
    葛世荣, 王军祥, 王庆良, 等. 刮板输送机中锰钢中部槽的自强化抗磨机理及应用[J]. 煤炭学报, 2016, 41 (9): 2373-2379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609032.htm

    Ge Shirong, Wang Junxiang, Wang Qingliang, et al. Self-strengthening wear resistant mechanism and application of medium manganese steel applied for the chute of scraper conveyor[J]. Journal of China Coal Society, 2016, 41 (9): 2373-2379. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201609032.htm
    [9]
    柴金荣, 叶磊, 范兴帅, 等. 刮板输送机中板磨损性能的研究进展[J]. 中国煤炭, 2018, 44(12): 75-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201812022.htm

    Chai Jinrong, Ye Lei, Fan Xingshuai, et al. Research progress on the wear property of middle plate of scraper conveyor middle trough[J]. China Coal, 2018, 44(12): 75-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201812022.htm
    [10]
    黄晓冬, 宋延沛. 原位反应铸造法制备颗粒增强铁基复合材料的研究现状[J]. 铸造技术, 2017, 38(5): 990-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201705003.htm

    Huang Xiaodong, Song Yanpei. Research status of Fe matrix composites with particle reinforcement by in situ reaction casting[J]. Foundry Technology, 2017, 38(5): 990-995. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201705003.htm
    [11]
    庄伟彬, 韩明明, 刘敬福, 等. 陶瓷颗粒增强铁基复合材料的研究进展[J]. 热加工工艺, 2018, 47(4): 40-42, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804009.htm

    Zhuang Weibin, Han Mingming, Liu Jingfu, et al. Research progress of ceramic particle reinforced iron matrix composite[J]. Hot Working Technology, 2018, 47(4): 40-42, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201804009.htm
    [12]
    曹新建, 金剑锋, 曹敬袆, 等. 不同类型颗粒混合增强铁基复合材料的磨损性能[J]. 材料工程, 2017, 45(8): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201708011.htm

    Cao Xinjian, Jin Jianfeng, Cao Jingyi, et al. Wear resistance of iron matrix composites reinforced by mixed-type particles[J]. Journal of Materials Engineering, 2017, 45(8): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201708011.htm
    [13]
    张婉婷, 王悦, 陈华辉. ZTAp/Fe45复合材料冲击性能的数值模拟与实验验证[J]. 矿业科学学报, 2018, 3(4): 386-391. http://kykxxb.cumtb.edu.cn/article/id/163

    Zhang Wanting, Wang Yue, Chen Huahui. Numerical simulation and experimental validation of the impact properties of ZTAp/Fe45 composite[J]. Journal of Mining Science and Technology, 2018, 3(4): 386-391. http://kykxxb.cumtb.edu.cn/article/id/163
    [14]
    王悦, 付道仁, 信振洋, 等. ZTAp/Fe45复合材料的强韧性研究[J]. 矿业科学学报, 2020, 5(5): 556-563. doi: 10.19606/j.cnki.jmst.2020.05.010

    Wang Yue, Fu Daoren, Xin Zhenyang, et al. Research on the strength and toughness of ZTAp/Fe45 composites[J]. Journal of Mining Science and Technology, 2020, 5(5): 556-563. doi: 10.19606/j.cnki.jmst.2020.05.010
    [15]
    信振洋, 王悦, 苗文成, 等. 颗粒增强金属基复合材料参数化建模研究[J]. 矿业科学学报, 2020, 5(1): 86-95. http://kykxxb.cumtb.edu.cn/article/id/268

    Xin Zhenyang, Wang Yue, Miao Wencheng, et al. Parametric modeling of particle reinforced metal matrix composites[J]. Journal of Mining Science and Technology, 2020, 5(1): 86-95. http://kykxxb.cumtb.edu.cn/article/id/268
    [16]
    曹保卫, 柏帆. 液相烧结TiC-Al2O3颗粒共增强铁基复合材料的制备[J]. 铸造技术, 2017, 38(8): 1834-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201708015.htm

    Cao Baowei, Bai Fan. Preparation of TiC-Al2O3 particles reinforced iron-matrix composites by liquid phase sintering[J]. Foundry Technology, 2017, 38(8): 1834-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZJS201708015.htm
    [17]
    周谟金, 蒋业华, 卢德宏, 等. B4C包覆ZTA颗粒增强铁基复合材料制备与性能[J]. 材料导报, 2018, 32(24): 4324-4328. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824021.htm

    Zhou Mojin, Jiang Yehua, Lu Dehong, et al. Preparation and properties of the ZTA particles cover with B4C powder reinforced iron matrix composites[J]. Materials Review, 2018, 32(24): 4324-4328. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201824021.htm
    [18]
    王娟, 郑开宏. ZTA颗粒增强铁基复合材料的高温磨料磨损性能研究[J]. 热加工工艺, 2018, 47(10): 101-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810030.htm

    Wang Juan, Zheng Kaihong. Study on high temperature abrasive wear properties of ZTA particle reinforced iron matrix composites[J]. Hot Working Technology, 2018, 47(10): 101-105, 109. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201810030.htm
    [19]
    Bai H Q, Zhong L S, Kang L, et al. A novel iron matrix composite fabricated by two-step in situ reaction: Microstructure, formation mechanism and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 855: 157442.
    [20]
    Cho S, Lee Y H, Ko S, et al. Enhanced high-temperature compressive strength of TiC reinforced stainless steel matrix composites fabricated by liquid pressing infiltration process[J]. Journal of Alloys and Compounds, 2020, 817: 152714.
    [21]
    García C, Martín F, Herranz G, et al. Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding[J]. Wear, 2018, 414/415: 182-193.
    [22]
    刘侃, 徐方伟, 涂小慧, 等. ZTA颗粒增强高铬铸铁基复合材料界面研究[J]. 铸造, 2018, 67(5): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201805006.htm

    Liu Kan, Xu Fangwei, Tu Xiaohui, et al. Interfacial bonding behavior of high chromium cast iron composites reinforced with ZTA ceramic particles[J]. Foundry, 2018, 67(5): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZZZ201805006.htm
    [23]
    Hirschorn B, Orazem M E, Tribollet B, et al. Determination of effective capacitance and film thickness from constant-phase-element parameters[J]. Electrochimica Acta, 2010, 55(21): 6218-6227.
    [24]
    季辰辰, 米红宇, 杨生春. 超级电容器在器件设计以及材料合成的研究进展[J]. 科学通报, 2019, 64(1): 9-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201901005.htm

    Ji Chenchen, Mi Hongyu, Yang Shengchun. Latest advances in supercapacitors: From new electrode materials to novel device designs[J]. Chinese Science Bulletin, 2019, 64(1): 9-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201901005.htm
    [25]
    杜楠, 叶超, 田文明, 等. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 42(6): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201406014.htm

    Du Nan, Ye Chao, Tian Wenming, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. Journal of Materials Engineering, 2014, 42(6): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201406014.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (289) PDF downloads(14) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return