Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Zhang Zhaoran, Yu Tianfu, Xiang Fangbei, Liu Guoqing, Xia Yuxin. Utility tunnel disaster impact assessment and disaster reduction analysis based on graph theory and AHP[J]. Journal of Mining Science and Technology, 2022, 7(2): 217-224. doi: 10.19606/j.cnki.jmst.2022.02.009
Citation: Zhang Zhaoran, Yu Tianfu, Xiang Fangbei, Liu Guoqing, Xia Yuxin. Utility tunnel disaster impact assessment and disaster reduction analysis based on graph theory and AHP[J]. Journal of Mining Science and Technology, 2022, 7(2): 217-224. doi: 10.19606/j.cnki.jmst.2022.02.009

Utility tunnel disaster impact assessment and disaster reduction analysis based on graph theory and AHP

doi: 10.19606/j.cnki.jmst.2022.02.009
  • Received Date: 2021-05-18
  • Rev Recd Date: 2021-06-29
  • Publish Date: 2022-04-20
  • There are a variety of municipal pipelines in the underground utility tunnel, and once an accident occurs, the property loss and social impact will be huge. Disaster prevention and reduction can be achieved by accurately evaluating the impact value of disasters in the operation stage of utility tunnel and quantitatively analyzing the impact range and degree of disasters. This paper analyzes the evolution process of the internal and external disaster-causing factors and the disaster evolution path in the operation stage, and establishes a disaster evaluation model based on graph theory and AHP method. Taking Tongzhou section A utility tunnel project as the background, the model was used to obtain the impact values of each disaster in the utility tunnel and determine the disaster chain that needs to be managed. The research shows that the major factors affecting the disaster value of Tongzhou section A utility tunnel are explosions, earthquakes, quality problems and design problems. A chain-broken disaster reduction in terms of hazard factors, disaster-pregnant environment and disaster-bearing bodies is proposed. The research results can provide reference for disaster prevention and reduction of utility tunnel.
  • loading
  • [1]
    Jin Yong, Luo Yuqiu, Geng Pan, et al. Risk analysis and early warning system of underground comprehensive pipe gallery[J]. International Core Journal of Engineering, 2020, 6(11): 393-400.
    [2]
    黄萍, 林秋晖. 基于AHP-证据理论的综合管廊火灾安全评价[J]. 安全与环境学报, 2020, 20(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001001.htm

    Huang Ping, Lin Qiuhui. Safety evaluation of the utility tunnels' fire based on the AHP-evidence theory[J]. Journal of Safety and Environment, 2020, 20(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001001.htm
    [3]
    郭佳奇, 钱源, 王珍珍, 等. 城市地下综合管廊常见运维灾害及对策研究[J]. 灾害学, 2019, 34(1): 27-33. doi: 10.3969/j.issn.1000-811X.2019.01.006

    Guojia Qi, Qian Yuan, Wang Zhenzhen, et al. The common operational disasters and countermeasures of utility tunnel in urban[J]. Journal of Catastrophology, 2019, 34(1): 27-33. doi: 10.3969/j.issn.1000-811X.2019.01.006
    [4]
    张勇, 谢霞霞, 王祥宇, 等. 基于BN-bow-tie的智慧城市地下综合管廊运维灾害分析[J]. 建设科技, 2020(23): 58-61, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS202023016.htm

    Zhang Yong, Xie Xiaxia, Wang Xiangyu, et al. Operation and maintenance disaster analysis of underground utility tunnel in smart city based on BN-bow-Tie[J]. Construction Science and Technology, 2020(23): 58-61, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJS202023016.htm
    [5]
    周鲜华, 潘宏婷, 沈云飞. 地下综合管廊PPP模式风险因素评价: 基于ISM-MICMAC模型[J]. 会计之友, 2017(13): 59-64. doi: 10.3969/j.issn.1004-5937.2017.13.013

    Zhou Xianhua, Pan Hongting, Shen Yunfei. Evaluation of risk factors in the PPP model of underground utility tunnel-Based on ISM-MICMAC model[J]. Friends of Accounting, 2017(13): 59-64. doi: 10.3969/j.issn.1004-5937.2017.13.013
    [6]
    王述红, 张泽, 侯文帅, 等. 综合管廊多灾种耦合致灾风险评价方法[J]. 东北大学学报: 自然科学版, 2018, 39(6): 902-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201806028.htm

    Wang Shuhong, Zhang Ze, Hou Wenshuai, et al. Risk assessment method on multi-disaster coupled hazard for urban utility tunnel[J]. Journal of Northeastern University: Natural Science, 2018, 39(6): 902-906. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201806028.htm
    [7]
    董文静. 综合管廊全寿命周期风险分析与评价研究[D]. 西安: 长安大学, 2020.
    [8]
    李宏远. 城市地下综合管廊运维安全风险管理研究[D]. 北京: 北京建筑大学, 2019.
    [9]
    李金奎, 汪洋. 地下综合管廊地震响应研究进展[J]. 科学技术与工程, 2021, 21(9): 3428-3445. doi: 10.3969/j.issn.1671-1815.2021.09.002

    Li Jinkui, Wang Yang. Research progress of seismic response of underground utility tunnel[J]. Science Technology and Engineering, 2021, 21(9): 3428-3445. doi: 10.3969/j.issn.1671-1815.2021.09.002
    [10]
    刘述虹. 典型综合管廊体系地震响应分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
    [11]
    Karin R S. Graph theory: an introduction to proofs, algorithms, and applications[M]. United States: CRC Press, 2021.
    [12]
    朱嘉. 城市综合管廊安全风险辨识及评价体系研究[D]. 重庆: 重庆交通大学, 2017.
    [13]
    王蕾. 脆弱性视角下城市地下综合管廊路径规划方法[D]. 西安: 西安建筑科技大学, 2017.
    [14]
    杜伟升, 姜耀东, 焦振华, 等. 基于脆弱性指数法的整合矿井底板突水评价及主控因素分析[J]. 矿业科学学报, 2017, 2(2): 129-136. http://kykxxb.cumtb.edu.cn/article/id/56

    Du Weisheng, Jiang Yaodong, Jiao Zhenhua, et al. Study on the water inrush evaluation and major contributing factors determination using vulnerable index method in a built-up coal mine[J]. Journal of Mining Science and Technology, 2017, 2(2): 129-136. http://kykxxb.cumtb.edu.cn/article/id/56
    [15]
    张俊杰, 刘守强, 纪润清, 等. 基于分区变权及AHP的煤层底板突水脆弱性评价[J]. 矿业科学学报, 2020, 5(2): 131-139. http://kykxxb.cumtb.edu.cn/article/id/273

    Zhang Junjie, Liu Shouqiang, Ji Runqing, et al. Vulnerability evaluation of water inrush in coal seam floor based on zone variable weight and AHP[J]. Journal of Mining Science and Technology, 2020, 5(2): 131-139. http://kykxxb.cumtb.edu.cn/article/id/273
    [16]
    赵红泽, 李志伟, 孙健东, 等. 黑岱沟露天煤矿过断陷带开采程序优化选择[J]. 矿业科学学报, 2020, 5(2): 187-193. http://kykxxb.cumtb.edu.cn/article/id/279

    Zhao Hongze, Li Zhiwei, Sun Jiandong, et al. Optimization of mining sequence in the fault-subsiding area of Heidaigou open-pit mine[J]. Journal of Mining Science and Technology, 2020, 5(2): 187-193. http://kykxxb.cumtb.edu.cn/article/id/279
    [17]
    李永红, 范启雄, 周家丹. 多重叠加灾害孕源断链减灾模式研究[C]. 第十一届国家安全地球物理专题研讨会, 中国陕西西安: 中国地球物理学会, 2015: 381-384.
    [18]
    高小强. 北京通州综合管廊智慧运营与安全管理研究[D]. 北京: 中国矿业大学(北京), 2019.
    [19]
    刘文方, 肖盛燮, 隋严春, 等. 自然灾害链及其断链减灾模式分析[J]. 岩石力学与工程学报, 2006, 25(S1): 2675-2681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1011.htm

    Liu Wenfang, Xiao Shengxie, Sui Yanchun, et al. Analysis of natural disaster chain and chain-cutting disaster mitigation mode[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2675-2681. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S1011.htm
    [20]
    谷晨. 综合管廊设计中的几点思考[J]. 城市建设理论研究: 电子版, 2017(22): 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201722086.htm

    Gu Chen. Several Considerations on the Design of Comprehensive Pipeline Corridor[J]. Theoretical Research in Urban Construction, 2017(22): 92-93. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJL201722086.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(9)

    Article Metrics

    Article views (393) PDF downloads(30) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return