Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Luo Haohao, Zhang Yuantong, Zuo Jinjing, Li Chengxiao, Li Weiyu. Caustics experimental study on the interaction between moving cracks and voids under impact loading[J]. Journal of Mining Science and Technology, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008
Citation: Luo Haohao, Zhang Yuantong, Zuo Jinjing, Li Chengxiao, Li Weiyu. Caustics experimental study on the interaction between moving cracks and voids under impact loading[J]. Journal of Mining Science and Technology, 2022, 7(2): 210-216. doi: 10.19606/j.cnki.jmst.2022.02.008

Caustics experimental study on the interaction between moving cracks and voids under impact loading

doi: 10.19606/j.cnki.jmst.2022.02.008
  • Received Date: 2021-01-13
  • Rev Recd Date: 2021-01-21
  • Publish Date: 2022-04-20
  • In order to study the fracture characteristics of semi-disc specimens with circular defects under different impact speeds, Hopkinson rod is used to dynamically load the semi-disc specimen, and the fracture process of the semi-disc specimen is observed by the dynamic caustics test system, Through the combination of the two test systems, the fracture characteristics of the semi-disc specimens are studied, the research results show that: before the crack initiation, the focal speckle radius jumps, which is caused by the repeated loading of the incident rod. With the increase of the impact velocity, the peak stress intensity factor of the crack passing through the circular defect increases, and the propagation speed of the crack passing through the circular defect also increases significantly, which shows that the impact velocity contributes to the crack propagation. With the increase of the radius of the circular defect, the stress intensity factor of the second crack initiation at the circular defect becomes larger.
  • loading
  • [1]
    Kobayashi A S, Chan C F. A dynamic photoelastic analysis of dynamic-tear-test specimen[J]. Experimental Mechanics, 1976, 16(5): 176-181. doi: 10.1007/BF02327995
    [2]
    杨仁树, 陈程, 赵勇, 等. 空孔-裂纹偏置方式对PMMA冲击断裂动态行为的影响[J]. 振动与冲击, 2018, 37(20): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820019.htm

    Yang Renshu, Chen Cheng, Zhao Yong, et al. Influence of the void-crack offset method on the dynamic behavior of PMMA during impact fracture[J]. Journal of Vibration and Shock, 2018, 37(20): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820019.htm
    [3]
    岳中文, 王煦, 许鹏, 等. 含圆孔缺陷三点弯曲梁动态焦散实验[J]. 实验力学, 2015, 30(3): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201503011.htm

    Yue Zhongwen, Wang Xu, Xu Peng, et al. Dynamic caustics experiment of three-point bending beam with circular hole defect[J]. Journal of Experimental Mechanics, 2015, 30(3): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201503011.htm
    [4]
    许鹏, 陈程, 郭洋, 等. 含垂直层理介质在切缝药包爆破下裂纹扩展行为的试验研究[J]. 矿业科学学报, 2019, 4(6): 498-505. http://kykxxb.cumtb.edu.cn/article/id/251

    Xu Peng, Chen Cheng, Guo Yang, et al. Experimental study on crack propagation of slit charge blasting in media with vertical bedding plane[J]. Journal of Mining Science and Technology, 2019, 4(6): 498-505. http://kykxxb.cumtb.edu.cn/article/id/251
    [5]
    郭东明, 刘康, 罗浪, 等. 爆炸载荷下邻近硐室迎爆侧原先裂纹扩展机理研究[J]. 矿业科学学报, 2017, 2(4): 348-356. http://kykxxb.cumtb.edu.cn/article/id/82

    Guo Dongming, Liu Kang, Luo Lang, et al. Growth mechanism of original crack facing the blasting side of adjacent tunnel under the blasting load[J]. Journal of Mining Science and Technology, 2017, 2(4): 348-356. http://kykxxb.cumtb.edu.cn/article/id/82
    [6]
    李清, 曹怀建, 杨鸣泽, 等. 含偏置裂纹材料断裂韧性的焦散线实验测试[J]. 矿业科学学报, 2017, 2(3): 243-250. http://kykxxb.cumtb.edu.cn/article/id/69

    Li Qing, Cao Huaijian, Yang Mingze, et al. Experimental investigation on dynamic fracture toughness of offset crack material using caustic method[J]. Journal of Mining Science and Technology, 2017, 2(3): 243-250. http://kykxxb.cumtb.edu.cn/article/id/69
    [7]
    杨立云, 张勇进, 孙金超, 等. 偏置裂纹对含双裂纹PMMA试件动态断裂影响效应研究[J]. 矿业科学学报, 2017, 2(4): 330-335. http://kykxxb.cumtb.edu.cn/article/id/80

    Yang Liyun, Zhang Yongjin, Sun Jinchao, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks[J]. Journal of Mining Science and Technology, 2017, 2(4): 330-335. http://kykxxb.cumtb.edu.cn/article/id/80
    [8]
    李成孝, 张渊通, 安晨. 单侧开半圆孔PMMA试件Ⅰ型和Ⅰ-Ⅱ混合型裂纹动态扩展及数值模拟研究[J]. 矿业科学学报, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003

    Li Chengxiao, Zhang Yuantong, An Chen. Study on the dynamic propagation and numerical simulation of mode Ⅰ and mixed mode Ⅰ-Ⅱ cracks in PMMA specimens with unilateral semicircular holes[J]. Journal of Mining Science and Technology, 2020, 5(5): 490-501. doi: 10.19606/j.cnki.jmst.2020.05.003
    [9]
    Chen W, Lu F, Cheng M. Tension and compression tests of two polymers under quasi-static and dynamic loading[J]. Polymer Testing, 2002, 21(2): 113-121. doi: 10.1016/S0142-9418(01)00055-1
    [10]
    张廷毅, 高丹盈, 郑光和, 等. 三点弯曲下混凝土断裂韧度及影响因素[J]. 水利学报, 2013, 44(5): 601-607. doi: 10.3969/j.issn.0559-9350.2013.05.016

    Zhang Tingyi, Gao Danying, Zheng Guanghe, et al. Fracture toughness of concrete and influencing factors under three-point bending[J]. Journal of Hydraulic Engineering, 2013, 44(5): 601-607. doi: 10.3969/j.issn.0559-9350.2013.05.016
    [11]
    王海军, 李汉章, 任然, 等. 基于3D-ILC三点弯脆性固体内裂纹扩展规律及破坏特征研究[J]. 岩石力学与工程学报, 2019, 38(12): 2463-2477. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912007.htm

    Wang Haijun, Li Hanzhang, Ren Ran, et al. Three-point bending test study on the propagation law of internal cracks and failure characteristics of brittle solids based on 3D-ILC technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2463-2477. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201912007.htm
    [12]
    左建平, 黄亚明, 刘连峰. 含偏置缺口玄武岩原位三点弯曲细观断裂研究[J]. 岩石力学与工程学报, 2013, 32(4): 740-746. doi: 10.3969/j.issn.1000-6915.2013.04.012

    Zuo Jianping, Huang Yaming, Liu Lianfeng. Investigation on meso-fracture mechanism of basalt with offset notch based on in situ three-point bending tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 740-746. doi: 10.3969/j.issn.1000-6915.2013.04.012
    [13]
    姚学锋, 熊春阳, 方竞. 含偏置裂纹三点弯曲梁的动态断裂行为研究[J]. 力学学报, 1996, 28(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB606.002.htm

    Yao Xuefeng, Xiong Chunyang, Fang Jing. Study of dynamic fracture behaviour on three point bend beam with off center edge crack[J]. Acta Mechanica Sinica, 1996, 28(6): 22-30. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB606.002.htm
    [14]
    Theocaris P S, Ioakimidis N I. The equations of caustics for crack and other dynamic plane elasticity problems[J]. Engineering Fracture Mechanics, 1979, 12(4): 613-615. doi: 10.1016/0013-7944(79)90101-2
    [15]
    刘新荣, 傅晏, 郑颖人, 等. 颗粒流细观强度参数与岩石断裂韧度之间的关系[J]. 岩石力学与工程学报, 2011, 30(10): 2084-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110017.htm

    Liu Xinrong, Fu Yan, Zheng Yingren, et al. Relation between meso-parameters of particle flow code and fracture toughness of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2084-2089. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110017.htm
    [16]
    徐文彬, 曹培旺, 程世康. 不同偏置裂纹充填体断裂特性试验[J]. 岩土力学, 2018, 39(5): 1643-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805012.htm

    Xu Wenbin, Cao Peiwang, Cheng Shikang. An experiment on fracture characteristic behaviour of cemented backfill with different offset notch cracks[J]. Rock and Soil Mechanics, 2018, 39(5): 1643-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805012.htm
    [17]
    贾敬辉, 张永彬. 动荷载作用下三点弯曲梁的破坏形式与偏置裂纹位置的关系[J]. 武汉理工大学学报, 2012, 34(11): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201211020.htm

    Jia Jinghui, Zhang Yongbin. Relations between the location of the notch and the failure mode in three-point bending beam under the dynamic loads[J]. Journal of Wuhan University of Technology, 2012, 34(11): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201211020.htm
    [18]
    Beinert J, Kalthoff J F. Experimental determination of dynamic stress intensity factors by shadow patterns[J]. Springer Netherlands, 1981.
    [19]
    杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与I型运动裂纹相互作用的试验研究[J]. 岩土力学, 2016, 37(6): 1597-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606009.htm

    Yang Renshu, Xu Peng, Yue Zhongwen, et al. Laboratory study of interaction between a circular hole defect and mode I moving crack[J]. Rock and Soil Mechanics, 2016, 37(6): 1597-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201606009.htm
    [20]
    李清, 郭洋, 马万权, 等. 半圆盘构件冲击断裂特性的动态焦散线实验研究[J]. 振动与冲击, 2016, 35(9): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609010.htm

    Li Qing, Guo Yang, Ma Wanquan, et al. Dynamic caustics tests for semi-circular specimen under impact loading[J]. Journal of Vibration and Shock, 2016, 35(9): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201609010.htm
    [21]
    宋耀. 不同加载率条件下花岗岩动态断裂及损伤机理试验研究[D]. 北京: 中国矿业大学(北京), 2019.
    [22]
    洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012

    Hong Liang, Li Xibing, Ma Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526-533. doi: 10.3321/j.issn:1000-6915.2008.03.012
    [23]
    黄达, 黄润秋, 张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报, 2012, 31(2): 245-255. doi: 10.3969/j.issn.1000-6915.2012.02.003

    Huang Da, Huang Runqiu, Zhang Yongxing. Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 245-255. doi: 10.3969/j.issn.1000-6915.2012.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (285) PDF downloads(21) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return