Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Xu Bin, Li Yongliang, Lu Bin, Li Jin. Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field[J]. Journal of Mining Science and Technology, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007
Citation: Xu Bin, Li Yongliang, Lu Bin, Li Jin. Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field[J]. Journal of Mining Science and Technology, 2022, 7(2): 200-209. doi: 10.19606/j.cnki.jmst.2022.02.007

Analysis of roof bearing characteristics and coal pillar stability of cemented backfill field

doi: 10.19606/j.cnki.jmst.2022.02.007
  • Received Date: 2021-05-07
  • Rev Recd Date: 2021-06-07
  • Publish Date: 2022-04-20
  • In order to study the bearing characteristics of the roof and the coal pillar stability of continuous mining and continuous filling cemented filling field, a numerical analysis model based on FLAC3D is established to analyse the alternate bearing characteristics of the roof, study the conversion law of the primary and secondary bearing structures of the roof, and reveal the stress release and deformation law of the coal pillar. Based on the difference of the constraint conditions on both sides of the coal pillar, a mechanical model of the stress distribution of the coal pillar is established, and the influence law of the stress concentration coefficient, temporary support strength, burial depth and other factors on the ultimate bearing width of the coal pillar is obtained.By establishing the numerical analysis and simulation of the synergistic bearing of coal pillar and filler, the influence of the width of filler on the bearing characteristics of coal pillar is revealed. The study shows that: the bearing structure of the mine roof changes with the advancement of the working face, and the coal pillar is the main bearing structure during the co-bearing stage of the coal pillar and the filling body, and the filling body gradually transitions to the main bearing structure as the coal pillar is gradually extracted; the width of the stress equilibrium zone of the coal pillar is inversely proportional to the strength of the temporary support, and is positively proportional to the burial depth of the working face and the stress concentration coefficient, increasing the strength of the temporary support can significantly reduce the fragmentation zone of the critical surface. The increase in the width of the filling body can effectively control the stability of the coal pillar, and its main function is to reduce the force on the coal pillar while playing a role in restraining the lateral deformation of the coal pillar. In Haoyuan coal mine, by increasing the strength and filling rate of the filling body and enhancing the restraining effect of the filling body on the coal pillar, the stability of the coal pillar is effectively guaranteed, which provides a reference for the control of coal pillar deformation under similar conditions.
  • loading
  • [1]
    钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm

    Qian Minggao, Xu Jialin, Wang Jiachen. Further on the sustain-able mining of coal[J]. Journal of China Coal Society, 2018, 43(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801002.htm
    [2]
    谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805001.htm

    Xie Heping, Wang Jinhua, Wang Guofa, et al. New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201805001.htm
    [3]
    Zhang J X, Li B Y, Zhou N, et al. Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 197-205. doi: 10.1016/j.ijrmms.2016.07.025
    [4]
    Xie H P, Ju Y, Gao F, et al. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources[J]. Tunnelling and Underground Space Technology, 2017, 67: 68-70. doi: 10.1016/j.tust.2017.04.021
    [5]
    蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm

    Cai Meifeng, Xue Dinglong, Ren Fenhua. Current status and development strategy of metal mines[J]. Chinese Journal of Engineering, 2019, 41(4): 417-426. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201904001.htm
    [6]
    冯国瑞, 杜献杰, 郭育霞, 等. 结构充填开采基础理论与地下空间利用构想[J]. 煤炭学报, 2019, 44(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901008.htm

    Feng Guorui, Du Xianjie, Guo Yuxia, et al. Basic theory of constructional backfill mining and the underground space utilization concept[J]. Journal of China Coal Society, 2019, 44(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201901008.htm
    [7]
    Li M, Zhang J X, Zhou N, et al. Effect of particle size on the energy evolution of crushed waste rock in coal mines[J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1347-1354. doi: 10.1007/s00603-016-1151-5
    [8]
    张东升, 刘洪林, 范钢伟, 等. 新疆大型煤炭基地科学采矿的内涵与展望[J]. 采矿与安全工程学报, 2015, 32(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501001.htm

    Zhang Dongsheng, Liu Honglin, Fan Gangwei, et al. Connotation and prospection on scientific mining of large Xinjiang coal base[J]. Journal of Mining & Safety Engineering, 2015, 32(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201501001.htm
    [9]
    Cao Z Z, Xu P, Li Z H, et al. Joint bearing mechanism of coal pillar and backfilling body in roadway backfilling mining technology[J]. Computers Materials & Continua, 2018, 54(2): 137-159. http://doc.paperpass.com/journal/20180067jsjclhlxtyw.html
    [10]
    Emad M Z, Mitri H, Kelly C. State-of-the-art review of backfill practices for sublevel stoping system[J]. International Journal of Mining, Reclamation and Environment, 2015, 29(6): 544-556. doi: 10.1080/17480930.2014.889363
    [11]
    Al Heib M M, Didier C, Masrouri F. Improving short-and long-term stability of underground gypsum mine using partial and total backfill[J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 447-461. doi: 10.1007/s00603-009-0066-9
    [12]
    Kostecki T, Spearing A J S. Influence of backfill on coal pillar strength and floor bearing capacity in weak floor conditions in the Illinois Basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76: 55-67. doi: 10.1016/j.ijrmms.2014.11.011
    [13]
    王方田, 屠世浩. 浅埋房式采空区下近距离煤层长壁开采致灾机制及防控技术[M]. 徐州: 中国矿业大学出版社, 2015.
    [14]
    宋卫东, 朱鹏瑞, 戚伟, 等. 三轴作用下岩柱-充填体试件耦合作用机理研究[J]. 采矿与安全工程学报, 2017, 34(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703024.htm

    Song Weidong, Zhu Pengrui, Qi Wei, et al. Coupling mechanism of rock-backfill system under triaxial compression[J]. Journal of Mining & Safety Engineering, 2017, 34(3): 573-579. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201703024.htm
    [15]
    宋卫东, 任海锋, 曹帅. 侧限压缩条件下充填体与岩柱相互作用机理[J]. 中国矿业大学学报, 2016, 45(1): 49-55, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601008.htm

    Song Weidong, Ren Haifeng, Cao Shuai. Interaction mechanism between backfill and rock pillar under confined compression condition[J]. Journal of China University of Mining & Technology, 2016, 45(1): 49-55, 95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201601008.htm
    [16]
    Liu X S, Tan Y L, Ning J G, et al. Mechanical properties and damage constitutive model of coal in coal-rock combined body[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 140-150. doi: 10.1016/j.ijrmms.2018.07.020
    [17]
    尹大伟, 陈绍杰, 陈兵, 等. 煤样贯穿节理对岩-煤组合体强度及破坏特征影响模拟研究[J]. 采矿与安全工程学报, 2018, 35(5): 1054-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201805024.htm

    Yin Dawei, Chen Shaojie, Chen Bing, et al. Simulation study on effects of coal persistent joint on strength and failure characteristics of rock-coal combined body[J]. Journal of Mining & Safety Engineering, 2018, 35(5): 1054-1062. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201805024.htm
    [18]
    Zhao T B, Guo W Y, Lu C P, et al. Failure characteristics of combined coal-rock with different interfacial angles[J]. Geomechanics and Engineering, 2016, 11(3): 345-359. doi: 10.12989/gae.2016.11.3.345
    [19]
    郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究[J]. 岩土力学, 2011, 32(5): 1333-1339. doi: 10.3969/j.issn.1000-7598.2011.05.009

    Guo Dongming, Zuo Jianping, Zhang Yi, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles[J]. Rock and Soil Mechanics, 2011, 32(5): 1333-1339. doi: 10.3969/j.issn.1000-7598.2011.05.009
    [20]
    唐岳松, 张令非, 吕华永. 煤基固废制备充填材料配比优化试验研究[J]. 矿业科学学报, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230

    Tang Y S, Zhang L F, Lü H Y. Study on proportion optimization of coal-based solid wastes filling materials. Journal of Mining Science and Technology, 2019, 4(4): 327-336. http://kykxxb.cumtb.edu.cn/article/id/230
    [21]
    陈磊, 郑志阳, 许向前, 等. 充填体强度形成速率与工作面推进速度的关系[J]. 矿业科学学报, 2018, 3(2): 156-164. http://kykxxb.cumtb.edu.cn/article/id/133

    Chen L, Zheng Z Y, Xu X Q, et al. Relationship between the strength formation rate of the filling body and the advancing speed of the working face. Journal of Mining Science and Technology, 2018, 3(2): 156-164. http://kykxxb.cumtb.edu.cn/article/id/133
    [22]
    路彬, 张新国, 李飞, 等. 短壁矸石胶结充填开采技术与应用[J]. 煤炭学报, 2017, 42(S1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1002.htm

    Lu Bin, Zhang Xinguo, Li Fei, et al. Study and application of short-wall gangue cemented backfilling technology[J]. Journal of China Coal Society, 2017, 42(S1): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2017S1002.htm
    [23]
    Lu B, Li Y L, Fang S Z, et al. Cemented backfilling mining technology for gently inclined coal seams using a continuous mining and continuous backfilling method[J]. Shock and Vibration, 2021, (2): 1-12. http://www.researchgate.net/publication/349370552_Cemented_Backfilling_Mining_Technology_for_Gently_Inclined_Coal_Seams_Using_a_Continuous_Mining_and_Continuous_Backfilling_Method
    [24]
    侯朝炯, 马念杰. 煤层巷道两帮煤体应力和极限平衡区的探讨[J]. 煤炭学报, 1989, 14(4): 21-29. doi: 10.3321/j.issn:0253-9993.1989.04.001

    Hou Chaojiong, Ma Nianjie. Stress in in-seam roadway sides and limit equilibrium zone[J]. Journl of China Coal Society, 1989, 14(4): 21-29. doi: 10.3321/j.issn:0253-9993.1989.04.001
    [25]
    朱晓峻. 带状充填开采岩层移动机理研究[D]. 徐州: 中国矿业大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (291) PDF downloads(23) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return