Volume 7 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Li Wenrui, Zhao Yaoyao, Wang Dengke, Liu Peng. Study on estimation method of methane permeability in coal[J]. Journal of Mining Science and Technology, 2022, 7(2): 185-192. doi: 10.19606/j.cnki.jmst.2022.02.005
Citation: Li Wenrui, Zhao Yaoyao, Wang Dengke, Liu Peng. Study on estimation method of methane permeability in coal[J]. Journal of Mining Science and Technology, 2022, 7(2): 185-192. doi: 10.19606/j.cnki.jmst.2022.02.005

Study on estimation method of methane permeability in coal

doi: 10.19606/j.cnki.jmst.2022.02.005
  • Received Date: 2021-08-02
  • Rev Recd Date: 2021-10-10
  • Publish Date: 2022-04-20
  • The gas flow path in coal body is mainly composed of slits and pores, which is a typical dual gas flow path structure. Generally, in order to quantify the apparent permeability of gas transport in different scale flow paths, mathematical models of permeability are established using the pore or slit structure of single flow path. With the development of microstructure characterization technology, the characterization of slits and pores in real coal is more accurate, and the permeability model based on single flow path is obviously not accurate enough. Therefore, in this paper, the micron scale gas flow path is simplified into two geometric forms of slit and pore. High-precision CT technology is used to obtain the volume proportion of pore and slit structure in the total gas flow path, namely pore porosity and slit porosity. Then, the parameters are substituted into the statistical distribution model of permeability, and the overall apparent permeability with slits and pores is obtained. Finally, the calculation results of apparent permeability of single flow path pores-based model, slits-based model and the dual flow path pore-slit-based model are compared and analyzed. The results show that the slit-based apparent permeability model overestimates the actual apparent permeability, but the pore-based apparent permeability model underestimates it, and the mixed pore-slit-based permeability is in between. From the mean value of relative deviation of apparent permeability calculated for single gas path structure and dual gas path structure, the mean value of relative deviation of pore-based apparent permeability is no more than 50 %, which is closer to that of the real dual flow path pore-slit-based apparent permeability.
  • loading
  • [1]
    Lu S Q, Cheng Y P, Li W. Model development and analysis of the evolution of coal permeability under different boundary conditions[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 129-138. doi: 10.1016/j.jngse.2016.02.049
    [2]
    聂百胜, 王科迪, 樊堉, 等. 基于小角X射线散射技术计算不同孔形的煤孔隙特征比较研究[J]. 矿业科学学报, 2020, 5(3): 284-290. http://kykxxb.cumtb.edu.cn/article/id/291

    Nie Baisheng, Wang Kedi, Fan Yü, et al. The comparative study on calculation of coal pore characteristics of different pore shapes based SAXS[J]. Journal of Mining Science and Technology, 2020, 5(3): 284-290. http://kykxxb.cumtb.edu.cn/article/id/291
    [3]
    董川龙, 滕腾, 李志虎, 等. 考虑微观孔隙几何的砂岩自发渗吸理论模型[J]. 矿业科学学报, 2021, 6(4): 418-428. doi: 10.19606/j.cnki.jmst.2021.04.006

    Dong Chuanlong, Teng Teng, Li Zhihu, et al. Theoretical model of water spontaneous imbibition of sandstone considering microscopic pore geometry[J]. Journal of Mining Science and Technology, 2021, 6(4): 418-428. doi: 10.19606/j.cnki.jmst.2021.04.006
    [4]
    Wang G, Qin X J, Shen J N, et al. Quantitative analysis of microscopic structure and gas seepage characteristics of low-rank coal based on CT three-dimensional reconstruction of CT images and fractal theory[J]. Fuel, 2019, 256: 115900. doi: 10.1016/j.fuel.2019.115900
    [5]
    Fang H H, Sang S X, Liu S Q, et al. Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui basin[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106285. doi: 10.1016/j.petrol.2019.106285
    [6]
    李立功, 康天合, 李彦斌. 考虑动态克林伯格系数的煤储层渗透率预测模型[J]. 地球物理学报, 2018, 61(1): 304-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801027.htm

    Li Ligong, Kang Tianhe, Li Yanbin. Prediction model of permeability in coal reservoirs considering the dynamic Klinkenberg coefficient[J]. Chinese J Geophys, 2018, 61(1): 304-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201801027.htm
    [7]
    White F M. Viscous fluid flow[M]. New York: McGraw-Hill Education (ISE Editions), 1974.
    [8]
    Eldridge B D, Brown L F. The effect of cross sectional pore shape on Knudsen diffusion in porous materials[J]. Aiche Journal, 1976, 22: 942-944. doi: 10.1002/aic.690220526
    [9]
    Matson S L, Quinn J A. Knudsen diffusion through noncircular pores: textbook errors[J]. Aiche Journal, 1977, 23(5): 768-770. doi: 10.1002/aic.690230521
    [10]
    Rahmanian M R, Aguilera R, Kantzas A. A new unified diffusion-viscous-flow model based on pore-level studies of tight gas formations[J]. SPE Journal, 2013, 18(1): 38-49. doi: 10.2118/149223-PA
    [11]
    吴克柳, 李相方, 陈掌星, 等. 页岩气和致密砂岩气藏微裂隙气体传输特性[J]. 力学学报, 2015, 47(6): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506008.htm

    Wu Keliu, Li Xiangfang, Chen Zhangxing, et al. Gas transport behavior through micro fractures of shale and tight gas reservoirs[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201506008.htm
    [12]
    Yu H, Fan J C, Chen J, et al. Pressure-dependent transport characteristic of methane gas in slit nanopores[J]. International Journal of Heat and Mass Transfer, 2018, 123: 657-667. doi: 10.1016/j.ijheatmasstransfer.2018.03.003
    [13]
    Fenton L F. The sum of log-normal probability distributions in scatter transmission systems[J]. Communications Systems Ire Transactions on, 1960, 8(1): 57-67. doi: 10.1109/TCOM.1960.1097606
    [14]
    Singh H, Javadpour F, Ettehadtavakkol A, et al. Nonempirical apparent permeability of shale[J]. SPE Reservoir Evaluation & Engineering, 2014, 17(3): 414-424.
    [15]
    Veltzke T, Thöming J. An analytically predictive model for moderately rarefied gas flow[J]. Journal of Fluid Mechanics, 2012, 698: 406-422. doi: 10.1017/jfm.2012.98
    [16]
    Pang Y, Soliman M Y, Sheng J. Investigating gas-adsorption, stress-dependence, and non-Darcy-flow effects on gas storage and transfer in nanopores by use of simplified local density model[J]. SPE Reservoir Evaluation & Engineering, 2018, 21(1): 73-95.
    [17]
    曲鸿雁, 彭岩, 刘继山, 等. 气体吸附对页岩裂隙表观渗透率和页岩气采收率的影响[J]. 中国科学: 技术科学, 2018, 48(8): 891-900. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808009.htm

    Qu Hongyan, Peng Yan, Liu Jishan, et al. Impact of gas adsorption on apparent permeability of shale fracture and shale gas recovery rate[J]. Scientia Sinica Technologica, 2018, 48(8): 891-900. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201808009.htm
    [18]
    Quinn P M, Parker B L, Cherry J A. Using constant head step tests to determine hydraulic apertures in fractured rock[J]. Journal of Contaminant Hydrology, 2011, 126(1-2): 85-99. doi: 10.1016/j.jconhyd.2011.07.002
    [19]
    Gensterblum Y, Ghanizadeh A, Cuss R J, et al. Gas transport and storage capacity in shale gas reservoirs-A review. Part A: transport processes[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 87-122. doi: 10.1016/j.juogr.2015.08.001
    [20]
    张平, 王登科, 于充, 等. 基于工业CT扫描的数字煤心构建过程及裂隙形态表征[J]. 河南理工大学学报: 自然科学版, 2019, 38(6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201906002.htm

    Zhang Ping, Wang Dengke, Yü Chong, et al. Digital coal core construction process and crack characterization based on industrial CT scanning[J]. Journal of Henan Polytechnic University: Natural Science, 2019, 38(6): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB201906002.htm
    [21]
    宋党育, 何凯凯, 吉小峰, 等. 基于CT扫描的煤中孔裂隙精细表征[J]. 天然气工业, 2018, 38(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm

    Song Dangyu, He Kaikai, Ji Xiaofeng, et al. Fine characterization of pores and fractures in coal based on a CT scan[J]. Natural Gas Industry, 2018, 38(3): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803007.htm
    [22]
    Oudinot A Y, Riestenberg D E, Koperna G J. Enhanced gas recovery and CO2 storage in coal bed methane reservoirs with N2 co-injection[J]. Energy Procedia, 2017, 114: 5356-5376. doi: 10.1016/j.egypro.2017.03.1662
    [23]
    Wang G D, Ren T, Wang K, et al. Improved apparent permeability models of gas flow in coal with Klinkenberg effect[J]. Fuel, 2014, 128(1): 53-61.
    [24]
    王磊, 梁卫国. 超临界CO2压裂下煤岩体裂隙扩展规律试验研究[J]. 煤炭科学技术, 2019, 47(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201902011.htm

    Wang Lei, Liang Weiguo. Experimental study on crack propagation of coal-rock mass under supercritical CO2 fracturing[J]. Coal Science and Technology, 2019, 47(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201902011.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (559) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return