Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Yang Zhi, Li Yü, Zhao Fei, Wei Hongxue, Guan Jianbo, Jin Chaobin, Zhao Meng. Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves[J]. Journal of Mining Science and Technology, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011
Citation: Yang Zhi, Li Yü, Zhao Fei, Wei Hongxue, Guan Jianbo, Jin Chaobin, Zhao Meng. Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves[J]. Journal of Mining Science and Technology, 2022, 7(1): 113-122. doi: 10.19606/j.cnki.jmst.2022.01.011

Fine detection of shallow coal mined-out areas by multichannel analysis of surface waves

doi: 10.19606/j.cnki.jmst.2022.01.011
  • Received Date: 2021-10-29
  • Rev Recd Date: 2021-11-12
  • Publish Date: 2022-02-01
  • In order to finely detect the distribution range of shallow coal mined-out areas, a low-frequency focused factor is introduced into the phase shift method, and a low-frequency focused phase shift method is proposed, which has the advantage of extracting low-frequency dispersion energy on a short receivor array.The synthetic test results show that the low-frequency focused phase shift method significantly improves the focus of the dispersion energy at the low frequency, extends the range of frequency bands that can be picked up, and increases the detection depth.Meanwhile, the method shortens the spread length required to calculate the dispersion energy, ensuring that the MASW method has a high lateral resolution.The real data in the shallow coal mined-out area shows that using the low-frequency focused phase shift method in the dispersion energy extraction, the MASW method obtains high-precision horizontal slices of the shear wave velocity and identifies the extent of the mined-out area, the location of the security pillar and its geometry.It confirms the effectiveness of the low-frequency focused phase shift method to improve the lateral resolution of MASW and the feasibility to detect the shallow coal mined-out area finely.
  • loading
  • [1]
    刘菁华, 王祝文, 朱士, 等. 煤矿采空区及塌陷区的地球物理探查[J]. 煤炭学报, 2005, 30(6): 715-719. doi: 10.3321/j.issn:0253-9993.2005.06.008

    Liu Jinghua, Wang Zhuwen, Zhu Shi, et al. The geophysical exploration about exhausted area and sinking area in coal mine[J]. Journal of China Coal Society, 2005, 30(6): 715-719. doi: 10.3321/j.issn:0253-9993.2005.06.008
    [2]
    王鹏, 程建远, 姚伟华, 等. 积水采空区地面-钻孔瞬变电磁探测技术[J]. 煤炭学报, 2019, 44(8): 2502-2508.

    Wang Peng, Cheng Jianyuan, Yao Weihua, et al. Technology of detecting water-filled goaf beside borehole using downhole transient electromagnetic method[J]. Journal of China Coal Society, 2019, 44(8): 2502-2508.
    [3]
    崔芳鹏, 武强, 林元惠, 等. 中国煤矿水害综合防治技术与方法研究[J]. 矿业科学学报, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141

    Cui Fangpeng, Wu Qiang, Lin Yuanhui, et al. Prevention and control techniques & methods for water disasters at coal mines in China[J]. Journal of Mining Science and Technology, 2018, 3(3): 219-228. http://kykxxb.cumtb.edu.cn/article/id/141
    [4]
    王家臣, Jürgen Kretschmann, 李杨. 关闭煤炭矿区资源利用与可持续发展的几点思考[J]. 矿业科学学报, 2021, 6(6): 633 -641. https://d.wanfangdata.com.cn/periodical/kykxxb202106001

    Wang Jiachen, Jürgen Kretschmann, Li Yang. Reflections on resource utilization and sustainable development of closed coal mining areas[J]. Journal of mining science and technology, 2021, 6(6): 633 -641. https://d.wanfangdata.com.cn/periodical/kykxxb202106001
    [5]
    杨德义, 王贇, 王辉. 陷落柱的绕射波[J]. 石油物探, 2000, 39(4): 82-86. doi: 10.3969/j.issn.1000-1441.2000.04.011

    Yang Deyi, Wang Yun, Wang Hui. Difraction waves from fallen pillars[J]. Geophysical Prospecting for Petroleum, 2000, 39(4): 82-86. doi: 10.3969/j.issn.1000-1441.2000.04.011
    [6]
    杨双安, 宁书年. 老窑采空区的地震探测与研究[J]. 中国煤田地质, 2004, 16(1): 44-47. doi: 10.3969/j.issn.1674-1803.2004.01.015

    Yang Shuangan, Ning Shunian. Research on seismic surveying goafing of the old mine[J]. Coal Geology of China, 2004, 16(1): 44-47. doi: 10.3969/j.issn.1674-1803.2004.01.015
    [7]
    卫红学, 查文锋, 冯春龙. 采空区上地震时间剖面的特征分析[J]. 地球物理学进展, 2014, 29(4): 1808-1814.

    Wei Hongxue, Zha Wenfeng, Feng Chunlong. Analysis of characteristics of seismic section in goaf area[J]. Progress in Geophysics, 2014, 29(4): 1808-1814.
    [8]
    苑昊, 刘佳朋, 姜在兴. 煤矿采空区四维地震特征分析及识别方法: 以淮南煤田张集矿区为例[J]. 现代地质, 2021, 35(4): 1018-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202104011.htm

    Yuan Hao, Liu Jiapeng, Jiang Zaixing. 4D seismic characteristics in coal mine gobs: a case study from the zhangji coal mine in Huainan coalfield[J]. Geoscience, 2021, 35(4): 1018-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202104011.htm
    [9]
    薛国强, 宋建平, 闫述, 等. 瞬变电磁探测地下洞体的可行性分析[J]. 石油大学学报: 自然科学版, 2004, 28(5): 135-138. doi: 10.3321/j.issn:1000-5870.2004.05.030

    Xue Guoqiang, Song Jianping, Yan Shu, et al. Feasibility analysis of transient electromagnetic method for detecting underground cave[J]. Journal of the University of Petroleum, China, 2004, 28(5): 135-138. doi: 10.3321/j.issn:1000-5870.2004.05.030
    [10]
    杨镜明. 高密度电阻率法煤田采空区勘察效果[J]. 物探与化探, 2012, 36(S1): 12-15.

    Yang Jingming. The application of high density method to the exploration of coalfield goaf[J]. Geophysical and Geochemical Exploration, 2012, 36(S1): 12-15.
    [11]
    程久龙, 潘冬明, 李伟, 等. 强电磁干扰区灾害性采空区探地雷达精细探测研究[J]. 煤炭学报, 2010, 35(2): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201002016.htm

    Cheng Jiulong, Pan Dongming, Li Wei, et al. Study on the detecting of hazard abandoned workings by ground penetrating radar on strong electromagnetic interference area[J]. Journal of China Coal Society, 2010, 35(2): 227-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201002016.htm
    [12]
    薛国强, 潘冬明, 于景邨. 煤矿采空区地球物理探测应用综述[J]. 地球物理学进展, 2018, 33(5): 2187-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805056.htm

    Xue Guogiang, Pan Dongming, Yu Jingcun. Review the applications of geophysical methods for mapping coal-mine voids[J]. Progress in Geophysics, 2018, 33(5): 2187-2192. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201805056.htm
    [13]
    贾开国, 吴德明. 工程物探在地下空洞探测中的应用实例分析[J]. 工程勘察, 2006, 34(S1): 278-282.

    Jia Kaiguo, Wu Deming. Application of engineering geophysical survey in underground cavity exploration[J]. Journal of Geotechnical Investigation & Surveying, 2006, 34(S1): 278-282.
    [14]
    刘云祯, 王振东. 瞬态面波法的数据采集处理系统及其应用实例[J]. 物探与化探, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm

    Liu Yunzhen, Wang Zhendong. Data collection and processing system of transient surface wave method and examples of its application[J]. Geophysical and Geochemical Exploration, 1996, 20(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH601.003.htm
    [15]
    张碧星, 肖柏勋, 杨文杰, 等. 瑞利波勘探中"之"形频散曲线的形成机理及反演研究[J]. 地球物理学报, 2000, 43(4): 557-567. doi: 10.3321/j.issn:0001-5733.2000.04.017

    Zhang Bixing, Xiao Boxun, Yang Wenjie, et al. Mechanism of zigzag dispersion curves in rayleigh exploration and its inversion study[J]Chinese Journal of Geophysics, 2000, 43(4): 557-567. doi: 10.3321/j.issn:0001-5733.2000.04.017
    [16]
    张碧星, 鲁来玉, 鲍光淑. 瑞利波勘探中"之"字形频散曲线研究[J]. 地球物理学报, 2002, 45(2): 263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013

    Zhang Bixing, Lu Laiyü, Bao Guangshu. A study on zigzag dispersion curves in Rayleigh wave exploration[J]. Chinese Journal of Geophysics, 2002, 45(2): 263-274. doi: 10.3321/j.issn:0001-5733.2002.02.013
    [17]
    常锁亮, 张淑婷, 李贵山, 等. 多道瞬态瑞雷波法在探测煤矿采空区中的应用[J]. 中国煤田地质, 2002, 14(3): 70-72. doi: 10.3969/j.issn.1674-1803.2002.03.030

    Chang Suoliang, Zhang Shuting, Li Guishan, et al. Application of multi-channel transient Rayleigh wave method on survey of goaf in coal mine[J]. Coal Geology of China, 2002, 14(3): 70-72. doi: 10.3969/j.issn.1674-1803.2002.03.030
    [18]
    Nasseri-Moghaddam A, Cascante G, Hutchinson J. A new quantitative procedure to determine the location and embedment depth of a void using surface waves[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(1): 51-64. doi: 10.2113/JEEG10.1.51
    [19]
    苏晓强. 瞬态瑞雷波法在地表探测煤矿采空区位置中的应用[J]. 煤, 2005, 14(4): 24-26.

    Su Xiaoqiang. Application of instantaneous Rayleigh wave method in detecting goaf of coal mine surface[J]. Coal, 2005, 14(4): 24-26.
    [20]
    Xia J H, Nyquist J E, Xu Y X, et al. Feasibility of detecting near-surface feature with Rayleigh-wave diffraction[J]. Journal of Applied Geophysics, 2007, 62(3): 244-253. doi: 10.1016/j.jappgeo.2006.12.002
    [21]
    陈昌彦, 白朝旭, 宋连亮, 等. 多道瞬态瑞雷波技术在公路采空塌陷区探测中应用[J]. 地球物理学进展, 2010, 25(2): 701-708. doi: 10.3969/j.issn.1004-2903.2010.02.045

    Chen Changyan, Bai Chaoxü, Song Lianliang, et al. Application of the multichannel transient Rayleigh wave method to highway goaf detection[J]. Progress in Geophysics, 2010, 25(2): 701-708. doi: 10.3969/j.issn.1004-2903.2010.02.045
    [22]
    Rector J W, Pfeiffe J, Hodges S, et al. Tomographic imaging of surface waves: a case study from the Phoenix Mine, Battle Mountain, Nevada[J]. The Leading Edge, 2015, 34(11): 1360-1364. doi: 10.1190/tle34111360.1
    [23]
    夏江海. 高频面波方法[M]. 武汉: 中国地质大学出版社, 2015.

    Xia Jianghai. High frequency surface wave method[M]. Wuhan: China University of Geosciences Press, 2015.
    [24]
    Park C B, Miller R D, Xia J H. Multichannel analysis of surface waves[J]. GEOPHYSICS, 1999, 64(3): 800-808. doi: 10.1190/1.1444590
    [25]
    Park C B, Miller R D, Xia J H. Imaging dispersion curves of surface waves on multichannel record[C]//SEG Technical Program Expanded Abstracts 1998. Society of Exploration Geophysicists, 1998: 1377-1380.
    [26]
    Rix G J, Leipski E A. Accuracy and resolution of surface wave inversion[C]//Recent Advances in Instrumentation, Data Acquisition & Testing in Soil Dynamics. ASCE, 1991.
    [27]
    Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. GEOPHYSICS, 1986, 51(4): 889-901. doi: 10.1190/1.1442147
    [28]
    Virieux J. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method[J]. Exploration Geophysics, 1984, 15(4): 265.
    [29]
    闫英伟. 浅地表高频面波成像技术研究[D]. 长春: 吉林大学, 2019.

    Yan Yingwei. Research on high-frequency surface wave imaging technique for the shallow subsurface[D]. Changchun: Jinlin University, 2019.
    [30]
    Xia J H, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. GEOPHYSICS, 1999, 64(3): 691-700. doi: 10.1190/1.1444578
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (451) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return