Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Liu Linsong, Shi Songlin, Sun Junmin, Li Jintao, Wang Zhaoguo, Li Jiaxing, Liu Qinfu. Composition and origin of high-alumina coal in Jungar coalfield[J]. Journal of Mining Science and Technology, 2022, 7(1): 101-112. doi: 10.19606/j.cnki.jmst.2022.01.010
Citation: Liu Linsong, Shi Songlin, Sun Junmin, Li Jintao, Wang Zhaoguo, Li Jiaxing, Liu Qinfu. Composition and origin of high-alumina coal in Jungar coalfield[J]. Journal of Mining Science and Technology, 2022, 7(1): 101-112. doi: 10.19606/j.cnki.jmst.2022.01.010

Composition and origin of high-alumina coal in Jungar coalfield

doi: 10.19606/j.cnki.jmst.2022.01.010
  • Received Date: 2021-06-15
  • Rev Recd Date: 2021-07-12
  • Publish Date: 2022-02-01
  • Based on the analysis of tectonic background and coal-accumulating environment of Jungar coalfield, the coal petrological characteristics, inorganic mineral composition, distribution and occurrence regularity of coal and gangue in No.6 coal of the Junger coalfield are studied, and the genesis is determined byutilizing the research methods of coal petrology, mineralogy and geochemistry.The study shows that the average contents of the inertinite, vitrinite and exinite in the maceral of No.6 coal in the study area are 59 %, 28 % and 13 %, respectively.Compared with the Late Paleozoic coals in other areas of North China, the content of the inertinite is high, which reflects an adequate supply of surface water during the formation of No.6 coal seam.The main inorganic minerals in coal and gangue are kaolinite and boehmite, associated with quartz, calcite, siderite, pyrite, anhydrite, anatase and svanbergite.The vertical changes of the mineral composition and main chemical elements of No.6 coal indicate that the middle of the coal seam is rich in boehmite, while the upper and lower parts are rich in kaolinite.There are three origins of kaolinite: colloidal precipitation crystallization, terrestrial transport sedimentation and volcanic ash alteration.And there are two origins of boehmite: alumina colloidal precipitation crystallization and desilication alteration of kaolinite.
  • loading
  • [1]
    Looney B. BP statistical review of world energy[M]. London UK: British Petroleum Company, 2020.
    [2]
    国家统计局. 中国统计年鉴: 2019[M]. 北京: 中国统计出版社, 2019.
    [3]
    王双明. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京: 煤炭工业出版社, 1996.
    [4]
    Dai S F, Jiang Y F, Ward C R, et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology, 2012, 98: 10-40. doi: 10.1016/j.coal.2012.03.003
    [5]
    刘焕杰. 准格尔煤田含煤建遗岩相古地理学研究[M]. 北京: 地质出版社, 1991.
    [6]
    Hou Y, Wang D, Dong G. The net primary productivity of early Permian peatland and their control factors: evidenced by the no. 6 coal seam of Jungar coalfield in North China[J]. World Journal of Engineering, 2019. doi: 10.1108/WJE-08-2018-0264
    [7]
    周安朝. 华北地块北缘晚古生代盆地演化及盆山耦合关系[D]. 西安: 西北大学, 2000.
    [8]
    石松林. 内蒙古准格尔煤田晚古生代煤系富铝矿物特征及成因[D]. 北京: 中国矿业大学(北京), 2014.
    [9]
    褚开智. 准格尔煤田含煤岩系沉积特征及沉积环境[J]. 内蒙古科技与经济, 2008(5): 13-16. doi: 10.3969/j.issn.1007-6921.2008.05.007

    Chu Kaizhi. Sedimentary characteristics and environment of coal bearing strata in Zhungeer coalfield[J]. Inner Mongolia Science Technology & Economy, 2008(5): 13-16. doi: 10.3969/j.issn.1007-6921.2008.05.007
    [10]
    陈洪德, 李洁, 张成弓, 等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报, 2011, 27(8): 2213-2229.

    Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
    [11]
    代世峰, 任德贻, 李生盛, 等. 内蒙古准格尔黑岱沟主采煤层的煤相演替特征[J]. 中国科学: D辑: 地球科学, 2007, 37(S1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1013.htm

    Dai Shifeng, Ren Deyi, Li Shengsheng, et al. Coal facies succession characteristics of the main coal seam in Inner Mongolia Zhungeer Heidaigou[J]. Science in China: Series D: Earth Sciences, 2007, 37(S1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1013.htm
    [12]
    鲁静, 杨敏芳, 孙晓禹, 等. 柴北缘侏罗纪煤显微组分与泥炭沉积速率[J]. 矿业科学学报, 2018, 3(1): 1-8. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201801001.htm

    Lu Jing, Yang Minfang, Sun Xiaoyu, et al. Jurassic coal maceral and deposition rate of peat in the northern Qaidam Basin[J]. Journal of Mining Science and Technology, 2018, 3(1): 1-8. http://www.cnki.com.cn/Article/CJFDTotal-KYKX201801001.htm
    [13]
    Liu Q F, Spears D A, Zhang P F, et al. The origins of kaolinite-rich rocks associated with coal measures in China[J]. Clay Minerals, 2001, 36(3): 389-402. doi: 10.1180/000985501750539481
    [14]
    Erkoyun H, Kadir S, Huggett J. Occurrence and genesis of tonsteins in the Miocene lignite, Tun?bilek Basin, Kütahya, western Turkey[J]. International Journal of Coal Geology, 2019, 202: 46-68. doi: 10.1016/j.coal.2018.11.015
    [15]
    Dai S F, Ren D Y, Chou C L, et al. Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization[J]. International Journal of Coal Geology, 2012, 94: 3-21. doi: 10.1016/j.coal.2011.02.003
    [16]
    林万智, 邵济安, 赵章元. 中朝板块晚古生代的古地磁特征[J]. 物探与化探, 1984, 8(5): 297-304.

    Lin Wanzhi, Shao Ji'an, Zhao Zhangyuan. Paleomagnetic features of sino-Korea plate in Late Paleozoic era[J]. Geophysical and Geochemical Exploration, 1984, 8(5): 297-304.
    [17]
    程东, 沈芳, 柴东浩. 山西铝土矿的成因属性及地质意义[J]. 太原理工大学学报, 2001, 32(6): 576-579. doi: 10.3969/j.issn.1007-9432.2001.06.006

    Cheng Dong, Shen Fang, Chai Donghao. Genetic attribute and geological significance of bauxite ores in Shanxi[J]. Journal of Taiyuan University of Technology, 2001, 32(6): 576-579. doi: 10.3969/j.issn.1007-9432.2001.06.006
    [18]
    Liu L S, Zhang T J, Liu J P, et al. Genesis of kaolinite deposits in the Jungar coalfield, North China: petrological, mineralogical and geochemical evidence[J]. Acta Geologica Sinica-English Edition, 2021, 95(2): 517-530. doi: 10.1111/1755-6724.14527
    [19]
    冯翠荣, 马海军. 准格尔煤田构造特征及聚煤规律研究[J]. 西部资源, 2017(5): 21-24. doi: 10.3969/j.issn.1672-562X.2017.05.010

    Feng Cuirong, Ma Haijun. The structure characterristics and coal accumulating law of Zhungeer coalfield[J]. Western Resources, 2017(5): 21-24. doi: 10.3969/j.issn.1672-562X.2017.05.010
    [20]
    孙玉壮. 阴山南麓高铝煤研究[M]. 北京: 科学出版社, 2016.
    [21]
    Dai S F, Li D, Chou C L, et al. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2008, 74(3/4): 185-202. http://www.researchgate.net/profile/Shifeng_Dai/publication/229105354_Mineralogy_and_geochemistry_of_boehmite-rich_coals_New_insights_from_the_Haerwusu_Surface_Mine_Jungar_Coalfield_Inner_Mongolia_China/links/56301c0c08ae01bbaedd495c.pdf
    [22]
    刘钦甫, 张鹏飞. 华北晚古生代煤系高岭岩物质组成和成矿机理研究[M]. 北京: 海洋出版社, 1997.
    [23]
    代世峰, 任德贻, 李生盛. 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现[J]. 地质学报, 2006, 80(2): 294-300, 315. doi: 10.3321/j.issn:0001-5717.2006.02.015

    Dai Shifeng, Ren Deyi, Li Shengsheng. A discovery of extremely-enriched boehmite from coal in the Jungar coalfield, the northeastern Ordos basin[J]. Acta Geologica Sinica, 2006, 80(2): 294-300, 315. doi: 10.3321/j.issn:0001-5717.2006.02.015
    [24]
    丘赫洛夫. 胶体矿物学原理[M]. 中译本. 北京: 科学出版社, 1965.
    [25]
    Staub J R, Cohen A D. Kaolinite-enrichment beneath coals; A modern analog, snuggedy swamp, south Carolina[J]. Journal of Sedimentary Research, 1978, 48(1): 203-210. http://www.onacademic.com/detail/journal_1000040102526010_48f9.html
    [26]
    何仕. 大同塔山煤矿黏土岩的特征及成因[J]. 中国煤田地质, 2006, 18(3): 23-25.

    He Shi. Mass origin and genesis of claystone in Tashan coalmine, Datong[J]. Coal Geology of China, 2006, 18(3): 23-25.
    [27]
    孙阳. 大兴安岭北部泥炭沼泽硅藻分布规律及环境指示意义[D]. 长春: 吉林大学, 2019.
    [28]
    刘大锐, 高桂梅, 池君洲, 等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报, 2018, 92(11): 2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012

    Liu Darui, Gao Guimei, Chi Junzhou, et al. Distribution rule of rare earth and trace elements in the Heidaigou openpit coal mine in the Junggar coal field[J]. Acta Geologica Sinica, 2018, 92(11): 2368-2375. doi: 10.3969/j.issn.0001-5717.2018.11.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (447) PDF downloads(32) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return