Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Gao Xiangyu, Shao Longyi, Wang Xuetian, Hua Fanghui, Lu Jing. Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou[J]. Journal of Mining Science and Technology, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009
Citation: Gao Xiangyu, Shao Longyi, Wang Xuetian, Hua Fanghui, Lu Jing. Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou[J]. Journal of Mining Science and Technology, 2022, 7(1): 89-100. doi: 10.19606/j.cnki.jmst.2022.01.009

Astronomical forcing in Lopingian coal-bearing cycles: a case study of Bijie area in northwestern Guizhou

doi: 10.19606/j.cnki.jmst.2022.01.009
  • Received Date: 2021-07-31
  • Rev Recd Date: 2021-10-13
  • Publish Date: 2022-02-01
  • To systematically study the sedimentary cycles and their astronomical forcing in the Lopingian coal-bearing series in Bijie area, northwestern Guizhou, the GR logging data from four boreholes in this area were analyzed and tested by using time series analysis and correlation coefficient method for the cyclostratigraphy analysis and astronomical testing.The cyclostratigraphy analysis results showed that the Lopingian coal-bearing series recorded the 405 kyr long eccentricity cycle, 125 kyr and 95 kyr short eccentricity cycle, and 40.6 kyr and 33 kyr obliquity cycle, and some 17 sedimentary cycles forced by 405 kyr long eccentricity cycle were identified.Astronomical testing results showed that the possibility of Lopingian coal-bearing series forced by astronomical periods is more than 99 %.According to the identified sedimentary cycles, and combining previous sequence subdivision results, a higher resolution sequence stratigraphic framework were established for the Lopingian in the study area, in which three third-order sequences and 17 fourth-order sequences were subdivided.At the same time, the precise age constrained by the tuned time scale was applied to establishing the astronomical time scale.A comprehensive analysis of sequence stratigraphic framework and the astronomical time scale showed that the deposition duration of the Lopingian was between 6.47 and 7.16 Myr, and there was a diachroneity of 0.69 Myr in the bottom part.In addition, the deposition duration of third-order sequence CSⅠ, CSⅡ and CSⅢ were 2.34 Myr, 1.98 Myr and 2.84 Myr, respectively.Finally, sedimentation rate variation of each third-order sequence was analyzed.The results showed that the average sedimentation rate of the Lopingian was between 2.91~4.11 cm/kyr, the sedimentation rate of CSⅠ displayed a change trend of "slow to fast" or "fast to slow and back to fast", the sedimentation rate of CSⅡ displayed a relatively stable state, and CSⅢ showed a cyclic trend of "fast-slow-fast-slow-fast".The established sequence stratigraphic framework can provide reference for high precision stratigraphic correlation of the Lopingian in Bijie, and at the same time, the established astronomical time scale can provide a high-resolution chronological framework for the study of the evolution of paleoclimate, paleo-environment and major historical events in the Lopingian.
  • loading
  • [1]
    吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望[J]. 地球科学, 2011, 36(3): 409-428.

    Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy[J]. Earth Science, 2011, 36(3): 409-428.
    [2]
    黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状[J]. 地学前缘, 2014, 21(2): 48-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402006.htm

    Huang Chunjü. The current status of cyclostratigraphy and astrochronology in the Mesozoic[J]. Earth Science Frontiers, 2014, 21(2): 48-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402006.htm
    [3]
    宗毅, 沈玉林, 秦勇, 等. 基于米氏旋回的黔西盘县上二叠统煤系高频层序研究[J]. 高校地质学报, 2019, 25(4): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904014.htm

    Zong Yi, Shen Yulin, Qin Yong, et al. High frequency cyclic sequence based on the milankovitch cycles in upper Permian coal measures in Panxian, western Guizhou Province[J]. Geological Journal of China Universities, 2019, 25(4): 598-609. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201904014.htm
    [4]
    袁学旭. 基于主成分分析的米兰科维奇旋回识别和应用研究[J]. 华北科技学院学报, 2019, 16(4): 48-56, 70. doi: 10.3969/j.issn.1672-7169.2019.04.009

    Yuan Xuexu. Recognition and application research of milankovitch cycle based on principal component analysis[J]. Journal of North China Institute of Science and Technology, 2019, 16(4): 48-56, 70. doi: 10.3969/j.issn.1672-7169.2019.04.009
    [5]
    刘杰, 孙美静, 苏明, 等. 神狐海域水合物钻探区第四纪米氏旋回高频层序地层划分[J]. 海洋地质与第四纪地质, 2016, 36(2): 11-18.

    Liu Jie, Sun Meijing, Su Ming, et al. High-resolution sequence stratigraphy on milankovitch cycles in the gas hydrate drilling area of shenhu waters[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 11-18.
    [6]
    王燕, 袁学旭, 郭英海, 等. 黔西上二叠统长兴组米兰科维奇旋回研究[J]. 现代地质, 2019, 33(3): 598-603.

    Wang Yan, Yuan Xuexu, Guo Yinghai, et al. Milankovitch cycles of the Changxing formation of upper Permian in western Guizhou province[J]. Geoscience, 2019, 33(3): 598-603.
    [7]
    Wang X T, Shao L Y, Eriksson K A, et al. Evolution of a plume-influenced source-to-sink system: an example from the coupled central Emeishan large igneous Province and adjacent western Yangtze cratonic basin in the Late Permian, SW China[J]. Earth-Science Reviews, 2020, 207 : 103224. doi: 10.1016/j.earscirev.2020.103224
    [8]
    常吟善, 覃军, 赵洪, 等. 基于米氏旋回理论的高频层序识别与划分: 以东海陆架盆地平湖斜坡带宝云亭地区平三段为例[J]. 海洋地质与第四纪地质, 2019, 39(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903005.htm

    Chang Yinshan, Qin Jun, Zhao Hong, et al. Identification and division of high-frequency sequence based on milakovitch cycle: a case of the 3rd member of Pinghu formation in baoyunting area, Pinghu slope zone, east China sea shelf basin[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 51-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201903005.htm
    [9]
    张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582.

    Zhang Guowei, Guo Anlin, Wang Yuejun, et al. Tectonics of south China continent and its implications[J]. Scientia Sinica Terrae, 2013, 43(10): 1553-1582.
    [10]
    王小川. 黔西川南滇东晚二叠世含煤地层沉积环境与聚煤规律[M]. 重庆: 重庆大学出版社, 1996: 11.
    [11]
    邵龙义, 高彩霞, 张超, 等. 西南地区晚二叠世层序—古地理及聚煤特征[J]. 沉积学报, 2013, 31(5): 856-866.

    Shao Longyi, Gao Caixia, Zhang Chao, et al. Sequence-palaeogeography and coal aaccumulation of late Permian in southwestern China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 856-866.
    [12]
    汪浩. 滇东、黔西晚二叠世煤的沉积学特征及古环境意义[D]. 北京: 中国矿业大学(北京), 2011.
    [13]
    邵龙义, 华芳辉, 易同生, 等. 贵州省乐平世层序-古地理及聚煤规律[J]. 煤田地质与勘探, 2021, 49(1): 45-56. doi: 10.3969/j.issn.1001-1986.2021.01.005

    Shao Longyi, Hua Fanghui, Yi Tongsheng, et al. Sequence-paleogeography and coal accumulation of Lopingian in Guizhou Province[J]. Coal Geology & Exploration, 2021, 49(1): 45-56. doi: 10.3969/j.issn.1001-1986.2021.01.005
    [14]
    陈中红, 查明, 金强. 自然伽玛及自然伽玛能谱测井在沉积盆地古环境反演中的应用[J]. 地球物理学报, 2004, 47(6): 1145-1150. doi: 10.3321/j.issn:0001-5733.2004.06.031

    Chen Zhonghong, Zha Ming, Jin Qiang. Application of natural gamma ray logging and natural gamma spectrometry logging to recovering paleoenvironment of sedimentary basin[J]. Chinese Journal of Geophysics, 2004, 47(6): 1145-1150. doi: 10.3321/j.issn:0001-5733.2004.06.031
    [15]
    杨雨, 付文钊, 余继峰, 等. 胶莱盆地K/Pg界线下陆相红层的旋回地层学分析[J]. 沉积学报, 2021, 39(4): 942-952. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104013.htm

    Yang Yu, Fu Wenzhao, Yu JiFeng, et al. Cyclostratigraphical analysis of continental red beds below K/Pg boundary in the Jiaolai basin[J]. Acta Sedimentologica Sinica, 2021, 39(4)942-952. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202104013.htm
    [16]
    Li M S, Hinnov L, Kump L. A cycle: time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127: 12-22. http://hub.hku.hk/handle/10722/307530
    [17]
    房强. 晚古生代冰期末期米兰科维奇旋回在华南的记录及环境响应[D]. 北京: 中国地质大学(北京), 2015.
    [18]
    薛乃华, 王伟, 关成国, 等. 宜昌埃迪卡拉系陡山沱组中—下部旋回地层学研究[J]. 地层学杂志, 2020, 44(3): 250-259.

    Xue Naihua, Wang Wei, Guan Chengguo, et al. Cyclostratigraphy of the lower—middle Ediacaran Doushantuo formation in Yichang, South China[J]. Journal of Stratigraphy, 2020, 44(3): 250-259.
    [19]
    江志红, 屠其璞, 施能. 多窗谱分析方法及其在全球变暖研究中的应用[J]. 气象学报, 2001, 59(4): 480-490. doi: 10.3321/j.issn:0577-6619.2001.04.010

    Jiang Zhihong, Tu Qipu, Shi Neng. Multi-taper method of spectral analysis and applications in global warming study[J]. Acta Meteorologica Sinica, 2001, 59(4): 480-490. doi: 10.3321/j.issn:0577-6619.2001.04.010
    [20]
    Mann M E, Lees J M. Robust estimation of background noise and signal detection in climatic time series[J]. Climatic Change, 1996, 33(3): 409-445. doi: 10.1007/BF00142586
    [21]
    Kodama K P, Hinnov L A. Rock magnetic cyclostratigraphy[M]. Oxford: John Wiley & Sons, Ltd, 2014.
    [22]
    闫建平, 言语, 彭军, 等. 天文地层学与旋回地层学的关系、研究进展及其意义[J]. 岩性油气藏, 2017, 29(1): 147-156. doi: 10.3969/j.issn.1673-8926.2017.01.020

    Yan Jianping, Yan Yu, Peng Jun, et al. The research progress, significance and relationship of astrostratigraphy with cyclostratigraphy[J]. Lithologic Reservoirs, 2017, 29(1): 147-156. doi: 10.3969/j.issn.1673-8926.2017.01.020
    [23]
    钟阳阳. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义[D]. 北京: 中国地质大学(北京), 2019.
    [24]
    Li M S, Kump L R, Hinnov L A, et al. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing[J]. Earth and Planetary Science Letters, 2018, 501: 165-179. doi: 10.1016/j.epsl.2018.08.041
    [25]
    吴怀春, 钟阳阳, 房强, 等. 古生代旋回地层学与天文地质年代表[J]. 矿物岩石地球化学通报, 2017, 36(5): 750-770, 696. doi: 10.3969/j.issn.1007-2802.2017.05.005

    Wu Huaichun, Zhong Yangyang, Fang Qiang, et al. Paleozoic cyclostratigraphy and astronomical time scale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 750-770, 696. doi: 10.3969/j.issn.1007-2802.2017.05.005
    [26]
    Wu H C, Zhang S H, Hinnov L A, et al. Time-calibrated Milankovitch cycles for the late Permian[J]. Nature Communications, 2013, 4: 2452. doi: 10.1038/ncomms3452
    [27]
    He B, Xu Y G, Huang X L, et al. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section[J]. Earth and Planetary Science Letters, 2007, 255(3/4): 306-323. http://www.sciencedirect.com/science/article/pii/S0012821X06009149
    [28]
    Yang J H, Cawood P A, Du Y S, et al. Early Wuchiapingian cooling linked to Emeishan basaltic weathering?[J]. Earth and Planetary Science Letters, 2018, 492: 102-111. doi: 10.1016/j.epsl.2018.04.004
    [29]
    Wang J, Shao L Y, Wang H, et al. SHRIMP zircon U-Pb ages from coal beds across the Permian-Triassic boundary, eastern Yunnan, southwestern China[J]. Journal of Palaeogeography, 2018, 7(2): 117-129. doi: 10.1016/j.jop.2018.01.002
    [30]
    Yuan D X, Shen S Z, Henderson C M, et al. Integrative timescale for the Lopingian (Late Permian): a review and update from Shangsi, South China[J]. Earth-Science Reviews, 2019, 188: 190-209. doi: 10.1016/j.earscirev.2018.11.002
    [31]
    Vail P R, Mitchum R M, Thompson S. Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level[C]// Seismic Stratigraphy-Applications to Hydrocarbon Exploration. Oklahoma: American Association of Petroleum Geologists Memoir 26, 1977: 83-97.
    [32]
    Cohen K M, Finney S C, Gibbard P L, et al. The ICS international chronostratigraphic chart[J]. Episodes, 2013, 36: 199-204. doi: 10.18814/epiiugs/2013/v36i3/002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (438) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return