Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Li Yong, Hu Haitao, Wang Yanbin, Han Wenlong, Wu Xiang, Wu Peng, Liu Du. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006
Citation: Li Yong, Hu Haitao, Wang Yanbin, Han Wenlong, Wu Xiang, Wu Peng, Liu Du. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70. doi: 10.19606/j.cnki.jmst.2022.01.006

Analysis of low production coalbed methane wells and application of secondary reconstruction technologies

doi: 10.19606/j.cnki.jmst.2022.01.006
  • Received Date: 2019-06-15
  • Rev Recd Date: 2019-08-09
  • Publish Date: 2022-02-01
  • Most coalbed methane reservoirs in China are of low porosity, low permeability and with extensive structural coals, which is difficult to be reformed, resulting in low single well gas production and recovery rates.It is the the key target for the development of coalbed methane industry to choose high efficiency reservoir and well reconstruction technology to effectively improve low efficiency wells.This paper systematically dissects the reasons for low production under the influence of "geological reservoir conditions, engineering construction reforms and drainage management control", summarizes the related technologies and application effects of the secondary reconstruction of coalbed methane wells, and provides suggestions for targeted reforms of different types of low-efficiency wells.The secodary reconstructable low-yield factors in coalbed methane wells include insufficient fractures propagation, fractures/pipe coal fines blockage, and limited pressure drop area.During secondary reconstruction, the distribution of coal structure, primary fracture morphology, reservoir permeability, variations of gas and water production, and applicability of drainage equipment need to be considered.The secondary reconstruction technology covers physical, chemical, microbial, and other methods.Secondary hydraulic fracturing, indirect fracturing, and anhydrous fracturing in physical methods, as well as acidification and permeability increasing technology and foam acidification in chemical methods are widely used.In secondary reconstruction, the reservoir adaptability of the reconstruction technology should be analyzed based on the geological conditions, primary reconstruction results, engineering and drainage status, and the purpose of secondary reconstruction should be determined based on the engineering drainage situation.In the secondary reconstruction, re-damage of the reservoir should be avoided to achieve effective transformation and improve the coalbed methane production from single well and well patterns.
  • loading
  • [1]
    罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6.

    Luo Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China[J]. Natural Gas Industry, 2013, 33(6): 1-6.
    [2]
    李勇, 王延斌, 倪小明, 等. 煤层气低效井成因判识及治理体系构建研究[J]. 煤炭科学技术, 2020, 48(2): 185-193.

    Li Yong, Wang Yanbin, Ni Xiaoming, et al. Study on identification and control system construction of low efficiency coalbed methane wells[J]. Coal Science and Technology, 2020, 48(2): 185-193.
    [3]
    朱庆忠, 刘立军, 陈必武, 等. 高煤阶煤层气开发工程技术的不适应性及解决思路[J]. 石油钻采工艺, 2017, 39(1): 92-96.

    Zhu Qingzhong, Liu Lijun, Chen Biwu, et al. Inadaptability of high-rank CBM development engineering and its solution idea[J]. Oil Drilling & Production Technology, 2017, 39(1): 92-96.
    [4]
    朱庆忠, 左银卿, 杨延辉. 如何破解我国煤层气开发的技术难题: 以沁水盆地南部煤层气藏为例[J]. 天然气工业, 2015, 35(2): 106-109. doi: 10.3787/j.issn.1000-0976.2015.02.017

    Zhu Qingzhong, Zuo Yinqing, Yang Yanhui. How to solve the technical problems in the CBM development: a case study of a CMB gas reservoir in the southern Qinshui Basin[J]. Natural Gas Industry, 2015, 35(2): 106-109. doi: 10.3787/j.issn.1000-0976.2015.02.017
    [5]
    冯青. 煤层气井低产伤害诊断方法及应用[J]. 煤田地质与勘探, 2019, 47(1): 86-91. doi: 10.3969/j.issn.1001-1986.2019.01.012

    Feng Qing. Method and application of diagnosis of low productivity damage of CBM wells[J]. Coal Geology & Exploration, 2019, 47(1): 86-91. doi: 10.3969/j.issn.1001-1986.2019.01.012
    [6]
    陈立超, 王生维, 张典坤, 等. 固井水泥浆侵入对煤储层压裂裂缝延展的影响[J]. 天然气工业, 2019, 39(8): 74-81. doi: 10.3787/j.issn.1000-0976.2019.08.009

    Chen Lichao, Wang Shengwei, Zhang Diankun, et al. Impact of cement slurry invasion on the propagation of hydraulic fractures in coal reservoirs[J]. Natural Gas Industry, 2019, 39(8): 74-81. doi: 10.3787/j.issn.1000-0976.2019.08.009
    [7]
    陈立超, 王生维. 煤岩弹性力学性质与煤层破裂压力关系[J]. 天然气地球科学, 2019, 30(4): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904007.htm

    Chen Lichao, Wang Shengwei. Relationship between elastic mechanical properties and equivalent fracture pressure of coal reservoir near wellbore[J]. Natural Gas Geoscience, 2019, 30(4): 503-511. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201904007.htm
    [8]
    蔡永博, 王凯, 徐超. 煤岩单体及原生组合体变形损伤特性对比试验研究[J]. 矿业科学学报, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290

    Cai Yongbo, Wang Kai, Xu Chao. Comparative experimental study on deformation and damage charateristics of singele coal rock and primary coal-rock combination[J]. Journal of Mining Science and Technology, 2020, 5(3): 278-283. http://kykxxb.cumtb.edu.cn/article/id/290
    [9]
    李勇, 汤达祯, 孟尚志, 等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91

    Li Yong, Tang Dazhen, Meng Shangzhi, et al. The in-situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology, 2017, 2(5): 416-424. http://kykxxb.cumtb.edu.cn/article/id/91
    [10]
    朱庆忠, 杨延辉, 王玉婷, 等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业, 2017, 37(10): 27-34. doi: 10.3787/j.issn.1000-0976.2017.10.004

    Zhu Qingzhong, Yang Yanhui, Wang Yuting, et al. Optimal geological-engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry, 2017, 37(10): 27-34. doi: 10.3787/j.issn.1000-0976.2017.10.004
    [11]
    鲁秀芹, 杨延辉, 周睿, 等. 高煤阶煤层气水平井和直井耦合降压开发技术研究[J]. 煤炭科学技术, 2019, 47(7): 221-226.

    Lu Xiuqin, Yang Yanhui, Zhou Rui, et al. Study on technology of horizontal wells and vertical wells coupled depressurization in high rank coalbed methane[J]. Coal Science and Technology, 2019, 47(7): 221-226.
    [12]
    闫欣璐, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气低效井二次改造研究[J]. 煤炭科学技术, 2018, 46(6): 119-125.

    Yan Xinlu, Tang Shuheng, Zhang Songhang, et al. Study on reconstruction of inefficient well of coalbed methane in southern Shizhuang Block of Qingshui Basin[J]. Coal Science and Technology, 2018, 46(6): 119-125.
    [13]
    张永平, 杨延辉, 邵国良, 等. 沁水盆地樊庄—郑庄区块高煤阶煤层气水平井开采中的问题及对策[J]. 天然气工业, 2017, 37(6): 46-54.

    Zhang Yongping, Yang Yanhui, Shao Guoliang, et al. Problems in the development of high-rank CBM horizontal wells in the Fanzhuang-Zhengzhuang Block in the Qinshui Basin and countermeasures[J]. Natural Gas Industry, 2017, 37(6): 46-54.
    [14]
    薛光武, 刘鸿福, 要惠芳, 等. 渭北盆地韩城开发区煤层气储层特征分析[J]. 太原理工大学学报, 2012, 43(2): 185-189. doi: 10.3969/j.issn.1007-9432.2012.02.018

    Xue Guangwu, Liu Hongfu, Yao Huifang, et al. Features of coalbed methane reservoir in development zone of Hancheng in Weihe basin[J]. Journal of Taiyuan University of Technology, 2012, 43(2): 185-189. doi: 10.3969/j.issn.1007-9432.2012.02.018
    [15]
    李勇, 汤达祯, 许浩, 等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报, 2014, 39(S1): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1028.htm

    Li Yong, Tang Dazhen, Xu Hao, et al. Characteristic of in situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 2014, 39(S1): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2014S1028.htm
    [16]
    刘升贵, 陈含, 彭智高, 等. 沁水盆地煤层气产能差异及采收率[J]. 辽宁工程技术大学学报: 自然科学版, 2013, 32(6): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201306001.htm

    Liu Shenggui, Chen Han, Peng Zhigao, et al. Coalbed methane productivity differences and gas recovery in Qinshui Basin[J]. Journal of Liaoning Technical University: Natural Science, 2013, 32(6): 721-724. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201306001.htm
    [17]
    杨延辉, 王玉婷, 陈龙伟, 等. 沁南西—马必东区块煤层气高效建产区优选技术[J]. 煤炭学报, 2018, 43(6): 1620-1626. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806015.htm

    Yang Yanhui, Wang Yuting, Chen Longwei, et al. Optimization technology of efficient CBM productivity areas in Qinnanxi-Mabidong Block, Qinshui Basin, Shanxi, China[J]. Journal of China Coal Society, 2018, 43(6): 1620-1626. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201806015.htm
    [18]
    朱庆忠, 鲁秀芹, 杨延辉, 等. 郑庄区块高阶煤层气低效产能区耦合盘活技术[J]. 煤炭学报, 2019, 44(8): 2547-2555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908030.htm

    Zhu Qingzhong, Lu Xiuqin, Yang Yanhui, et al. Coupled activation technology for low-efficiency productivity zones of high-rank coalbed methane in Zhengzhuang block, Shanxi, China[J]. Journal of China Coal Society, 2019, 44(8): 2547-2555. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201908030.htm
    [19]
    王涛. 樊庄区块煤层气直井低产的关键影响因素及二次压裂改造[D]. 徐州: 中国矿业大学, 2020.
    [20]
    周斌, 郝晋伟, 张春华. 松软煤层瓦斯钻孔失稳分析及动态密封技术[J]. 煤田地质与勘探, 2016, 44(4): 161-166. doi: 10.3969/j.issn.1001-1986.2016.04.031

    Zhou Bin, Hao Jinwei, Zhang Chunhua. Analysis on borehole instability under coupled multiple stress and dynamic sealing technology in soft coal seam[J]. Coal Geology & Exploration, 2016, 44(4): 161-166. doi: 10.3969/j.issn.1001-1986.2016.04.031
    [21]
    吴国代, 桑树勋, 程军, 等. 基于卸压煤层气开发的构造煤储层孔渗特征与类型划分: 以淮南矿区为例[J]. 石油学报, 2013, 34(4): 712-719. doi: 10.3969/j.issn.1001-8719.2013.04.025

    Wu Guodai, Sang Shuxun, Cheng Jun, et al. Poroperm characteristics and classification of tectonic coal beds for pressure-relieved methane exploitation: a case study on Huainan mining area[J]. Acta Petrolei Sinica, 2013, 34(4): 712-719. doi: 10.3969/j.issn.1001-8719.2013.04.025
    [22]
    邵先杰, 董新秀, 汤达祯, 等. 韩城矿区煤层气中低产井治理技术与方法[J]. 天然气地球科学, 2014, 25(3): 435-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403018.htm

    Shao Xianjie, Dong Xinxiu, Tang Dazhen, et al. Treatment technology and method of low-to-moderate production coalbed methane wells in Hancheng mining area[J]. Natural Gas Geoscience, 2014, 25(3): 435-443. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201403018.htm
    [23]
    刘世奇, 赵贤正, 桑树勋, 等. 煤层气井排采液面-套压协同管控: 以沁水盆地樊庄区块为例[J]. 石油学报, 2015, 36(S1): 97-108. doi: 10.7623/syxb2015S1012

    Liu Shiqi, Zhao Xianzheng, Sang Shuxun, et al. Cooperative control of working fluid level and casing pressure for coalbed methane production: a case study of Fanzhuang block in Qinshui Basin[J]. Acta Petrolei Sinica, 2015, 36(S1): 97-108. doi: 10.7623/syxb2015S1012
    [24]
    赵欣, 姜波, 徐强, 等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发, 2016, 43(1): 84-90.

    Zhao Xin, Jiang Bo, Xu Qiang, et al. Well pattern design and deployment for coalbed methane development[J]. Petroleum Exploration and Development, 2016, 43(1): 84-90.
    [25]
    秦勇, 吴建光, 张争光, 等. 基于排采初期生产特征的煤层气合采地质条件分析[J]. 煤炭学报, 2020, 45(1): 241-257. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001025.htm

    Qin Yong, Wu Jianguang, Zhang Zhengguang, et al. Analysis of geological conditions for coalbed methane co-production based on production characteristics in early stage of drainage[J]. Journal of China Coal Society, 2020, 45(1): 241-257. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202001025.htm
    [26]
    朱庆忠, 王宁, 张学英, 等. 煤层气井单相水流拟稳态排采模型与应用效果分析[J]. 煤炭学报, 2020, 45(3): 1116-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003026.htm

    Zhu Qingzhong, Wang Ning, Zhang Xueying, et al. Single-phase water flow quasi-steady-state drainage model and its application effect analysis in coal-bed methane wells[J]. Journal of China Coal Society, 2020, 45(3): 1116-1124. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202003026.htm
    [27]
    王凯峰, 唐书恒, 张松航, 等. 柿庄南区块煤层气高产潜力井低产因素分析[J]. 煤炭科学技术, 2018, 46(6): 85-91, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806015.htm

    Wang Kaifeng, Tang Shuheng, Zhang Songhang, et al. Analysis on low production factors of coalbed methane high production potential well in Southern Shizhuang Block[J]. Coal Science and Technology, 2018, 46(6): 85-91, 113. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201806015.htm
    [28]
    张建国, 刘忠, 姚红星, 等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术, 2016, 44(5): 59-63.

    Zhang Jianguo, Liu Zhong, Yao Hongxing, et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui Coalbed Methane Field[J]. Coal Science and Technology, 2016, 44(5): 59-63.
    [29]
    王乾. 淮北某区块煤层气井二次改造关键技术[D]. 焦作: 河南理工大学, 2017.
    [30]
    贾慧敏, 胡秋嘉, 祁空军, 等. 高阶煤煤层气直井低产原因分析及增产措施[J]. 煤田地质与勘探, 2019, 47(5): 104-110. doi: 10.3969/j.issn.1001-1986.2019.05.014

    Jia Huimin, Hu Qiujia, Qi Kongjun, et al. Reasons of low yield and stimulation measures for vertical CBM wells in high-rank coal[J]. Coal Geology & Exploration, 2019, 47(5): 104-110. doi: 10.3969/j.issn.1001-1986.2019.05.014
    [31]
    马平华, 霍梦颖, 何俊, 等. 煤层气井压裂影响因素分析与技术优化: 以鄂尔多斯盆地东南缘韩城矿区为例[J]. 天然气地球科学, 2017, 28(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702013.htm

    Ma Pinghua, Huo Mengying, He Jun, et al. Influencing factors and technology optimization of coalbed methane well fracturing: Taking Hancheng mining area as an example[J]. Natural Gas Geoscience, 2017, 28(2): 296-304. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201702013.htm
    [32]
    李军军, 郝春生, 王维, 等. 氮气震动压裂解堵工艺在煤层气井储层改造中的应用[J]. 煤矿安全, 2018, 49(10): 147-151.

    Li Junjun, Hao Chunsheng, Wang Wei, et al. Application of nitrogen vibration fracturing and plugging removal technology in reservoir reconstruction of coalbed methane well[J]. Safety in Coal Mines, 2018, 49(10): 147-151.
    [33]
    贾进章, 吴禹默, 李斌, 等. 低渗透煤层合增透技术应用[J]. 辽宁工程技术大学学报: 自然科学版, 2020, 39(3): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202003003.htm

    Jia Jinzhang, Wu Yumo, Li Bin, et al. Application of low permeability coal seam anti-reflection technology[J]. Journal of Liaoning Technical University: Natural Science, 2020, 39(3): 208-213. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY202003003.htm
    [34]
    万志杰. 芦岭煤矿煤层气井伴注液态CO2辅助水力压裂技术研究[J]. 中国煤炭地质, 2019, 31(7): 32-34, 47. doi: 10.3969/j.issn.1674-1803.2019.07.07

    Wan Zhijie. Study on CBM well hydraulic fracturing with assistant liquid CO2 concomitant injection in Luling coalmine[J]. Coal Geology of China, 2019, 31(7): 32-34, 47. doi: 10.3969/j.issn.1674-1803.2019.07.07
    [35]
    张文勇, 司磊, 郭启文, 等. 煤层气井液氮伴注压裂增透机制及应用研究[J]. 煤炭科学技术, 2019, 47(11): 97-102.

    Zhang Wenyong, Si Lei, Guo Qiwen, et al. Study on mechanism and application of liquid nitrogen injection combined with fracturing to enhance permeability in CBM wells[J]. Coal Science and Technology, 2019, 47(11): 97-102.
    [36]
    杨宇, 林璠, 曹煜, 等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探, 2016, 44(3): 46-50. doi: 10.3969/j.issn.1001-1986.2016.03.009

    Yang Yu, Lin Fan, Cao Yu, et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration, 2016, 44(3): 46-50. doi: 10.3969/j.issn.1001-1986.2016.03.009
    [37]
    熊先钺, 边利恒, 王伟, 等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术, 2017, 45(6): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706031.htm

    Xiong Xianyue, Bian Liheng, Wang Wei, et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. Coal Science and Technology, 2017, 45(6): 189-195. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201706031.htm
    [38]
    苏现波, 夏大平, 赵伟仲, 等. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6): 1-30.

    Su Xianbo, Xia Daping, Zhao Weizhong, et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology, 2020, 48(6): 1-30.
    [39]
    郭红玉, 罗源, 马俊强, 等. 不同煤阶煤的微生物增透效果和机理分析[J]. 煤炭学报, 2014, 39(9): 1886-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409018.htm

    Guo Hongyu, Luo Yuan, Ma Junqiang, et al. Analysis of mechanism and permeability enhancing effect via microbial treatment on different-rank coals[J]. Journal of China Coal Society, 2014, 39(9): 1886-1891. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201409018.htm
    [40]
    王晓蕾. 低渗透煤层提高瓦斯采收率技术现状及发展趋势[J]. 科学技术与工程, 2019, 19(17): 9-17. doi: 10.3969/j.issn.1671-1815.2019.17.002

    Wang Xiaolei. Present situation and development trend of gas recovery technology in low permeability coal seam[J]. Science Technology and Engineering, 2019, 19(17): 9-17. doi: 10.3969/j.issn.1671-1815.2019.17.002
    [41]
    贾男. 煤层脉动式酸化压裂增透技术及其应用[J]. 中国安全科学学报, 2020, 30(10): 75-81.

    Jia Nan. Research and application of pulsating acid fracturing technology in coal seam[J]. China Safety Science Journal, 2020, 30(10): 75-81.
    [42]
    张佩玉, 刘建伟, 滕强, 等. 水平井泡沫酸化技术的研究与应用[J]. 钻采工艺, 2010, 33(3): 112-114, 119, 146. doi: 10.3969/j.issn.1000-7393.2010.03.027

    Zhang Peiyu, Liu Jianwei, Teng Qiang, et al. Research & application of foam acidizing treatment technology in horizontal well[J]. Drilling & Production Technology, 2010, 33(3): 112-114, 119, 146. doi: 10.3969/j.issn.1000-7393.2010.03.027
    [43]
    李宾飞, 李兆敏, 徐永辉, 等. 泡沫酸酸化技术及其在气井酸化中的应用[J]. 天然气工业, 2006, 26(12): 130-132, 207. doi: 10.3321/j.issn:1000-0976.2006.12.036

    Li Binfei, Li Zhaomin, Xu Yonghui, et al. Foamed acid acidizing and its application on gas wells[J]. Natural Gas Industry, 2006, 26(12): 130-132, 207. doi: 10.3321/j.issn:1000-0976.2006.12.036
    [44]
    李莹, 郑瑞, 罗凯, 等. 筠连地区煤层气低产低效井成因及增产改造措施[J]. 煤田地质与勘探, 2020, 48(4): 146-155. doi: 10.3969/j.issn.1001-1986.2020.04.021

    Li Ying, Zheng Rui, Luo Kai, et al. Reasons of low yield and stimulation measures for CBM wells in Junlian area[J]. Coal Geology & Exploration, 2020, 48(4): 146-155. doi: 10.3969/j.issn.1001-1986.2020.04.021
    [45]
    王培义, 马鹏鹏, 张贤印, 等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术, 2017, 45(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201704005.htm

    Wang Peiyi, Ma Pengpeng, Zhang Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201704005.htm
    [46]
    王少雷, 林晓英, 苏现波, 等. 空气动力洗井技术在煤层气井中的应用与评价[J]. 煤田地质与勘探, 2016, 44(2): 134-140. doi: 10.3969/j.issn.1001-1986.2016.02.024

    Wang Shaolei, Lin Xiaoying, Su Xianbo, et al. Application and evaluation of the well flushing technology with compressed air in CBM wells[J]. Coal Geology & Exploration, 2016, 44(2): 134-140. doi: 10.3969/j.issn.1001-1986.2016.02.024
    [47]
    熊先钺. 韩城区块煤层气连续排采主控因素及控制措施研究[D]. 北京: 中国矿业大学(北京), 2014.
    [48]
    徐凤银, 李曙光, 王德桂. 煤层气勘探开发的理论与技术发展方向[J]. 中国石油勘探, 2008, 13(5): 1-6, 77. doi: 10.3969/j.issn.1672-7703.2008.05.001

    Xu Fengyin, Li Shuguang, Wang Degui. Development trend of CBM exploration and development theories and technologies[J]. China Petroleum Exploration, 2008, 13(5): 1-6, 77. doi: 10.3969/j.issn.1672-7703.2008.05.001
    [49]
    杨秀春, 叶建平. 煤层气开发井网部署与优化方法[J]. 中国煤层气, 2008, 5(1): 13-17, 4. doi: 10.3969/j.issn.1672-3074.2008.01.004

    Yang Xiuchun, Ye Jianping. Well pattern optimization design for CBM development[J]. China Coalbed Methane, 2008, 5(1): 13-17, 4. doi: 10.3969/j.issn.1672-3074.2008.01.004
    [50]
    单学军, 张士诚, 李安启, 等. 煤层气井压裂裂缝扩展规律分析[J]. 天然气工业, 2005, 25(1): 130-132, 220. doi: 10.3321/j.issn:1000-0976.2005.01.038

    Shan Xuejun, Zhang Shicheng, Li Anqi, et al. Analyzing the fracture extended law of hydraulic fracturing in coalbed gas wells[J]. Natural Gas Industry, 2005, 25(1): 130-132, 220. doi: 10.3321/j.issn:1000-0976.2005.01.038
    [51]
    徐兵祥, 李相方, 任维娜, 等. 基于均衡降压理念的煤层气井网井距优化模型[J]. 中国矿业大学学报, 2014, 43(1): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401013.htm

    Xu Bingxiang, Li Xiangfang, Ren Weina, et al. Optimization model of well pattern and spacing in CBM reservoirs using the concept of balanced depressurization[J]. Journal of China University of Mining & Technology, 2014, 43(1): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201401013.htm
    [52]
    杜维甲, 肖迅. 水力喷射径向钻孔在阜新刘家区煤层气开发中的应用[J]. 辽宁工程技术大学学报: 自然科学版, 2010, 29(1): 32-35. doi: 10.3969/j.issn.1008-0562.2010.01.009

    Du Weijia, Xiao Xun. Application of hydraulic jet drilling technique to CBM development in Finxin Liujia area[J]. Journal of Liaoning Technical University: Natural Science, 2010, 29(1): 32-35. doi: 10.3969/j.issn.1008-0562.2010.01.009
    [53]
    王海东. 高应力低渗透煤层深孔爆破增透机理与效果[J]. 煤矿安全, 2012, 43(S1): 17-21.

    Wang Haidong. Enhancing permeability mechanism and effectiveness of deep-hole blasting in high stressed and low permeable coal seam[J]. Safety in Coal Mines, 2012, 43(S1): 17-21.
    [54]
    朱正喜, 曹会, 陈沙沙. 国内水力喷射压裂工艺技术应用研究进展[J]. 石油矿场机械, 2014, 43(12): 82-87. doi: 10.3969/j.issn.1001-3482.2014.12.020

    Zhu Zhengxi, Cao Hui, Chen Shasha. Application and development of hydraulic jet fracturing in China[J]. Oil Field Equipment, 2014, 43(12): 82-87. doi: 10.3969/j.issn.1001-3482.2014.12.020
    [55]
    李军军, 郝春生, 王维, 等. 等离子脉冲技术提高煤层气田采收率的理论与实践[J]. 煤田地质与勘探, 2018, 46(5): 193-198. doi: 10.3969/j.issn.1001-1986.2018.05.030

    Li Junjun, Hao Chunsheng, Wang Wei, et al. Theory and practice of plasma pulse technology for enhancing coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 193-198. doi: 10.3969/j.issn.1001-1986.2018.05.030
    [56]
    姜永东, 鲜学福, 易俊, 等. 声震法促进煤中甲烷气解吸规律的实验及机理[J]. 煤炭学报, 2008, 33(6): 675-680. doi: 10.3321/j.issn:0253-9993.2008.06.017

    Jiang Yongdong, Xian Xuefu, Yi Jun, et al. Experimental and mechanical on the features of ultrasonic vibration stimulating the desorption of methane in coal[J]. Journal of China Coal Society, 2008, 33(6): 675-680. doi: 10.3321/j.issn:0253-9993.2008.06.017
    [57]
    姜永东, 鲜学福, 刘占芳. 声震法提高煤储层渗透率的实验与机理[J]. 辽宁工程技术大学学报: 自然科学版, 2009, 28(S1): 236-239. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1072.htm

    Jiang Yongdong, Xian Xuefu, Liu Zhanfang. Experiment and mechanism for enhancing coalbed penetrating coefficient with ultrasonic vibration[J]. Journal of Liaoning Technical University: Natural Science, 2009, 28(S1): 236-239. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY2009S1072.htm
    [58]
    林柏泉, 闫发志, 朱传杰, 等. 基于空气环境下的高压击穿电热致裂煤体实验研究[J]. 煤炭学报, 2016, 41(1): 94-99.

    Lin Baiquan, Yan Fazhi, Zhu Chuanjie, et al. Experimental study on crushing coal by electric and heat in the process of highvoltage breakdown in the air condition[J]. Journal of China Coal Society, 2016, 41(1): 94-99.
    [59]
    秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1-7, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm

    Qin Yong, Qiu Aici, Zhang Yongmin. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1-7, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201406004.htm
    [60]
    Biela J, Marxgut C, Bortis D, et al. Solid state modulator for plasma channel drilling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1093-1099. doi: 10.1109/TDEI.2009.5211860
    [61]
    武杰, 田永东. 高聚能电脉冲技术在沁水盆地煤层气井的应用[J]. 煤田地质与勘探, 2018, 46(5): 206-211, 218. doi: 10.3969/j.issn.1001-1986.2018.05.032

    Wu Jie, Tian Yongdong. Application of high energy electric pulse technology in coalbed methane wells in Qinshui basin[J]. Coal Geology & Exploration, 2018, 46(5): 206-211, 218. doi: 10.3969/j.issn.1001-1986.2018.05.032
    [62]
    Maurel O, Reess T, Matallah M, et al. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar[J]. Cement and Concrete Research, 2010, 40(12): 1631-1638. doi: 10.1016/j.cemconres.2010.07.005
    [63]
    鲍先凯, 刘源, 郭军宇, 等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报, 2020, 39(4): 715-725.

    Bao Xiankai, Liu Yuan, Guo Junyu, et al. Quantitative evaluation of fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 715-725.
    [64]
    王浩, 司青, 罗宪, 等. 2种氧化剂对贫煤孔隙特性影响的对比研究[J]. 煤矿安全, 2020, 51(4): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004001.htm

    Wang Hao, Si Qing, Luo Xian, et al. Comparative study on effect of two oxidants on pore characteristics of lean coal[J]. Safety in Coal Mines, 2020, 51(4): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202004001.htm
    [65]
    冯玉龙, 司青, 王浩, 等. 氧化剂处理前后煤孔隙分形特征研究[J]. 煤矿安全, 2021, 52(2): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202102004.htm

    Feng Yulong, Si Qing, Wang Hao, et al. Study on fractal characteristics of coal pore before and after oxidation treatment[J]. Safety in Coal Mines, 2021, 52(2): 18-22. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ202102004.htm
    [66]
    莫俊杰, 霸振, 关济朋, 等. 郑庄区块非自然下降井原因分析及对策研究[J]. 中国煤层气, 2019, 16(1): 28-30.

    Mo Junjie, Ba Zhen, Guan Jipeng, et al. Analysis and countermeasure research of non-natural decline wells in Zhengzhuang block[J]. China Coalbed Methane, 2019, 16(1): 28-30.
    [67]
    边利恒, 熊先钺, 王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术, 2017, 36(2): 185-186.

    Bian Liheng, Xiong Xianyue, Wang Weibin. Research on stimulation of low permeability soft coal formation[J]. Coal Technology, 2017, 36(2): 185-186.
    [68]
    伊永祥. 沁水盆地柿庄南区块煤层气井生产特征及排采控制研究[D]. 北京: 中国地质大学(北京), 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (783) PDF downloads(50) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return