Volume 7 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Zhao Jingtao, Peng Suping, Chen Zongnan, Liu Qiannan. Seismic diffraction detection method for geological hidden disasters in coal mining[J]. Journal of Mining Science and Technology, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001
Citation: Zhao Jingtao, Peng Suping, Chen Zongnan, Liu Qiannan. Seismic diffraction detection method for geological hidden disasters in coal mining[J]. Journal of Mining Science and Technology, 2022, 7(1): 1-8. doi: 10.19606/j.cnki.jmst.2022.01.001

Seismic diffraction detection method for geological hidden disasters in coal mining

doi: 10.19606/j.cnki.jmst.2022.01.001
  • Received Date: 2021-09-05
  • Rev Recd Date: 2021-11-02
  • Publish Date: 2022-02-01
  • The geological hidden disaster-causing bodies such as small-scale faults and collapsed columns may destroy the continuity of the coal seam, which will lead to accidents such as gas outburst and water outburst in the air mining area, and seriously threaten the coal mining safety.Traditional seismic exploration methods are mainly involved with reflected waves that have a limited resolution and cannot effectively identify them.A multi-parameter sparse optimization diffraction separation method in the shot domain is proposed that is based on curvelet sparse transformation and plane-wave decomposition.It can solve the problem of diffraction separation in the interfering or tangency cases and the separated diffractions have a waveform consistency and integrity.The 3D numerical modeling and simulation test results show that the proposed method can effectively eliminate the shielding effect of strong reflections, separate the complete diffracted/scattered wave, and improve the imaging accuracy of fault edges and scattering points, where the imaging features of polarity reversal can be used to distinguish different types of small-scale geological structures.The field data of Shanxi Yang Erkuang coal mine confirmed that the proposed method can effectively remove the shielding effect of strong reflections from coal seam, and the hyperbolic forms of diffractions in the stacked profile can qualitatively control its reliability.For seismic diffraction interpretation, full-wave field imaging results are generally required to provide a macroscopic geological background and the diffraction imaging results are combined to reveal hidden disaster-induced geological bodies.The diffraction image of collapsed column boundaries and their insider characterization is clearer, and the exhibition of small-scale fractures is more powerful.It is a high-resolution imaging method and has a great potential in detecting hidden disaster geological bodies, which can provide a technical guarantee for coal mine safety and efficient mining in China.
  • loading
  • [1]
    韩德馨, 彭苏萍. 我国煤矿高产高效矿井地质保障系统研究回顾及发展构想[J]. 中国煤炭, 2002, 28(2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200202000.htm

    Han Dexin, Peng Suping. Review and outlook for mine geological assurance system for China's high-efficiency coal Mines[J]. China Coal, 2002, 28(2): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME200202000.htm
    [2]
    Marfurt K J, Kirlin R L, Farmer S L, et al. 3-D seismic attributes using a semblance-based Coherence algorithm[J]. Geophysisc, 1998, 63(4): 1150-1165. http://www.researchgate.net/profile/Rodney_Kirlin/publication/249865564_3-D_seismic_attributes_using_a_semblance-based_coherency_algorithm/links/5605787108aea25fce3346bb.pdf
    [3]
    李建雄, 崔全章, 魏小东. 地震属性在微断层解释中的应用[J]. 石油地球物理勘探, 2011, 46(6): 925-929.

    Li Jianxiong, Cui Quanzhang, Wei Xiaodong. Application of seismic attributes in micro-fault interpretation[J]. Oil Geophysical Prospecting, 2011, 46(6): 925-929.
    [4]
    马晓宇, 王军, 李勇根, 等. 基于蚂蚁追踪的叠前裂缝预测技术[J]. 石油地球物理勘探, 2014, 49(6): 1199-1203.

    Ma Xiaoyu, Wang Jun, Li Yonggen, et al. Prestack fracture prediction based on ant tracking[J]. Oil Geophysical Prospecting, 2014, 49(6): 1199-1203.
    [5]
    王赟, 芦俊, 于光明. 能识别煤层中垂直断距小于3 m的断层吗?[J]. 煤炭学报, 2010, 35(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201004024.htm

    Wang Yun, Lu Jun, Yü Guangming. A normal fault in coal seams with drop height less than 3 m can be identified in seismic exploration?[J]. Journal of China Coal Society, 2010, 35(4): 629-634. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201004024.htm
    [6]
    Asgedom E G, Gelius L J, Austeng A, et al. A new approach to post-stack diffraction separation[C]//81st Annual International Meeting, SEG, Expanded Abstracts, 2011: 3861-3865.
    [7]
    Figueiredo J J S D, Oliveira F, Esmi E, et al. Automatic detection and imaging of diffraction points using pattern recognition[J]. Geophysical Prospecting, 2013, 61(S1): 368-379. http://www.onacademic.com/detail/journal_1000037856799610_ccc8.html
    [8]
    Gelius L J, Tygel M, Takahata A K, et al. High-resolution imaging of diffractions-A window-steered MUSIC approach[J]. Geophysics, 2013, 78 (6): S255- S264. doi: 10.1190/geo2013-0047.1
    [9]
    朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 2013, 56(1): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301030.htm

    Zhu Shengwang, Li Pei, Ning Junrui. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1): 280-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201301030.htm
    [10]
    蒋波, 赵金玉, 邬达理, 等. 基于反射波层拉平的绕射波分离与成像方法[J]. 石油物探, 2014, 53(2): 137-148.

    Jiang Bo, Zhao Jinyu, Wu Dali, et al. A method for diffraction wave separation and imaging based on horizon-flattening of reflection waves[J]. Geophysical Prospecting for Petroleum, 2014, 53(2): 137-148.
    [11]
    刘太臣, 胡江涛, 王华忠, 等. 奇异值谱分析在绕射波分离及成像中的应用[J]. 石油物探, 2014, 53(1): 46-53.

    Liu Taichen, Hu Jiangtao, Wang Huangzhong, et al. Diffraction wavefield separation and imaging using singular spectrum analysis[J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 46-53.
    [12]
    Zhao J T, Wang Y F, Yu C X. Diffraction imaging by uniform asymptotic theory and double exponential fitting[J]. Geophysical Prospecting, 2015, 63(2): 338-353.
    [13]
    Zhao J T, Peng S P, Du W F, et al. Diffraction imaging method by Mahalanobis-based amplitude damping[J]. 2016, 81(6): S399-S408.
    [14]
    Yu C X, Zhao J T, Wang Y F, et al. Sparse diffraction imaging method using an adaptive reweighting homotopy algorithm[J]. Journal of Geophysics & Engineering, 2017, 14(1): 26-40. http://www.onacademic.com/detail/journal_1000039746189110_9dc3.html
    [15]
    孙赞东, 白英哲. 反射波广义拉东谱法绕射波场分离技术[P]: 中国专利: ZL102854529A. 2013.
    [16]
    Zhang J F, Zhang J J. Diffraction imaging using shot and opening-angle gathers: A prestack time migration approach[J]. Geophysics, 2014, 79(2): S23-S33. http://www.onacademic.com/detail/journal_1000039178262710_9860.html
    [17]
    刘斌, 邸志新, 李晓峰, 等. 一种基于局部倾角估计的倾角域绕射波分离与成像方法[J]. 地球物理学进展, 2014, 29(5): 2204-2210.

    Liu Bin, Di Zhixin, Li Xiaofeng, et al. Separation and imaging method of diffraction based on local dip estimation in the dip-angle domain[J]. Progress in Geophysics, 2014, 29(5): 2204-2210.
    [18]
    徐辉. 倾角成像道集中反射波和绕射波特征分析及成像质量改善方法研究[J]. 石油物探, 2015, 54(2): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201502004.htm

    Xu Hui. The analysis of characteristics of reflection and diffraction wave in dip angle gathers and the method for enhancing the imaging quality[J]. Geophysical Prospecting for Petroleum, 2015, 54(2): 133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201502004.htm
    [19]
    Silvestrov I, Baina R, Landa E. Poststack diffraction imaging using reverse-time migration[J]. Geophysical Prospecting, 2016, 64(1): 129-142. doi: 10.1111/1365-2478.12280
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (545) PDF downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return