Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhang Ming, Fang Kuizhen, Wang Dongmin, Yao Guang, Liu Ze, Li Huiquan. Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer[J]. Journal of Mining Science and Technology, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013
Citation: Zhang Ming, Fang Kuizhen, Wang Dongmin, Yao Guang, Liu Ze, Li Huiquan. Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer[J]. Journal of Mining Science and Technology, 2021, 6(6): 737-745. doi: 10.19606/j.cnki.jmst.2021.06.013

Study on compatibility of fresh cement paste mixed with modified coal gasification slag and superplasticizer

doi: 10.19606/j.cnki.jmst.2021.06.013
  • Received Date: 2021-02-05
  • Rev Recd Date: 2021-05-05
  • Publish Date: 2021-12-01
  • Coal gasification slag is a kind of solid coal chemical waste which mainly contains aluminosilicate minerals.The gasification slag modified by mechanical grinding and chemical excitation can be used as active admixture of composite Portland cement, which can effectively reduce the carbon footprint in the production and preparation of cement building materials.In order to clarify the working performance of modified gasification slag cement fresh paste, the compatibility of gasification slag-cement binary system with superplasticizer was evaluated by studying the fluidity, ζ-potential and particle size distribution of gasification slag-cement composite paste.The results show that the coal gas slag modified by diethyl alcohol monoisopropanolamine is a kind of mesoporous material, and it has good workability when the content is not more than 30 %.Polycarboxylic acid superplasticizer is beneficial to the dispersibility and fluidity of modified gas slag cement paste, and the fresh coal gas slag cement paste mixed with polycarboxylic acid superplasticizer shows modified Bingham fluid characteristics.The experimental results have high theoretical reference value for studying the workability of gas slag-cement binary system and its compatibility with superplasticizer.
  • loading
  • [1]
    赵社库. 我国煤化工产业现状及发展建议[J]. 化工管理, 2019, 21: 14-15. doi: 10.3969/j.issn.1008-4800.2019.21.010

    Zhao Sheku. Present situation and development suggestion of coal chemical industry in China[J]. Chemical Enterprise Management, 2019(21): 14-15. doi: 10.3969/j.issn.1008-4800.2019.21.010
    [2]
    陈鲁园, 高云艳, 郭旭, 等. 新形势下我国煤炭资源的高效清洁利用的途径分析[J]. 当代化工研究, 2019(7): 35-37. doi: 10.3969/j.issn.1672-8114.2019.07.023

    Chen Luyuan, Gao Yunyan, Guo Xu, et al. Analysis on ways of efficient and clean utilization of coal resources in China under the new situation[J]. Modern Chemical Research, 2019(7): 35-37. doi: 10.3969/j.issn.1672-8114.2019.07.023
    [3]
    尹洪峰, 汤云, 任耘, 等. Texaco气化炉炉渣基本特性与应用研究[J]. 煤炭转化, 2009, 32(4): 30-33. doi: 10.3969/j.issn.1004-4248.2009.04.008

    Yin Hongfeng, Tang Yun, Ren Yun, et al. Study on the characteristic and application of gasification slag from texaco gasifier[J]. Coal Conversion, 2009, 32(4): 30-33. doi: 10.3969/j.issn.1004-4248.2009.04.008
    [4]
    胡志伟, 刘涛, 满杰, 等. 煤化工行业主要环境污染物来源及污染防治对策[J]. 山东化工, 2016, 45(24): 155-156, 158. doi: 10.3969/j.issn.1008-021X.2016.24.062

    Hu Zhiwei, Liu Tao, Man Jie, et al. The major source of environmental pollutants and countermeasure on control pollution in coal chemical industry[J]. Shandong Chemical Industry, 2016, 45(24): 155-156, 158. doi: 10.3969/j.issn.1008-021X.2016.24.062
    [5]
    张永华. 煤化工的废渣处理与利用探讨[J]. 黑龙江科技信息, 2013(27): 148. doi: 10.3969/j.issn.1673-1328.2013.27.138

    Zhang Yonghua. Discussion on treatment and utilization of waste residue in coal chemical industry[J]. Heilongjiang Science and Technology Information, 2013(27): 148. doi: 10.3969/j.issn.1673-1328.2013.27.138
    [6]
    蔡丽娟, 顾蔚. 现代煤化工产业发展与环境保护问题分析[J]. 石油化工安全环保技术, 2015, 31(4): 47-49, 59. doi: 10.3969/j.issn.1673-8659.2015.04.013

    Cai Lijuan, Gu Wei. Analysis on the development of modern coal chemical industry and issues about environmental protection[J]. Petrochemical Safety and Environmental Protection Technology, 2015, 31(4): 47-49, 59. doi: 10.3969/j.issn.1673-8659.2015.04.013
    [7]
    杨芊, 颜丙磊, 杨帅. 现代煤化工"十三五"中期发展情况分析[J]. 中国煤炭, 2019, 45(7): 77-83, 93. doi: 10.3969/j.issn.1006-530X.2019.07.015

    Yang Qian, Yan Binglei, Yang Shuai. Development situation analysis on modern coal chemical industry in middle period of 13th Five-Year Plan[J]. China Coal, 2019, 45(7): 77-83, 93. doi: 10.3969/j.issn.1006-530X.2019.07.015
    [8]
    陈刚. 煤化工残渣中多环芳烃类污染物环境风险评估研究[D]. 沈阳: 东北大学, 2013: 69.
    [9]
    张艺翔, 马钊, 冯敏. 气化灰渣应用前景浅析[J]. 化工管理, 2019(21): 13-14. doi: 10.3969/j.issn.1008-4800.2019.21.009

    Zhang Yixiang, Ma Zhao, Feng Min. Analysis on the application prospect of gsification ash[J]. Chemical Enterprise Management, 2019(21): 13-14. doi: 10.3969/j.issn.1008-4800.2019.21.009
    [10]
    杨帅, 石立军. 煤气化细渣组分分析及其综合利用探讨[J]. 煤化工, 2013, 41(4): 29-31, 38. doi: 10.3969/j.issn.1005-9598.2013.04.009

    Yang Shuai, Shi Lijun. Composition analysis of the fine slag from coal gasification and its comprehensive utilization[J]. Coal Chemical Industry, 2013, 41(4): 29-31, 38. doi: 10.3969/j.issn.1005-9598.2013.04.009
    [11]
    刘海菊, 刘凯, 郭琦. 煤化工过程气化废渣和废碱液的产生及处理技术探讨[J]. 化工管理, 2019(12): 121-122. doi: 10.3969/j.issn.1008-4800.2019.12.080

    Liu Haiju, Liu Kai, Guo Qi. Discussion on generation and treatment technology of gasification waste residue and waste lye in coal chemical process[J]. Chemical Enterprise Management, 2019(12): 121-122. doi: 10.3969/j.issn.1008-4800.2019.12.080
    [12]
    吴大刚, 赵代胜, 魏江波. 煤化工过程气化废渣和废碱液的产生及处理技术探讨[J]. 煤化工, 2016, 44(6): 56-59. doi: 10.3969/j.issn.1005-9598.2016.06.015

    Wu Dagang, Zhao Daisheng, Wei Jiangbo. Discussion on generation and treatment technology of gasification slag and alkaline wastewater in the coal chemical industry process[J]. Coal Chemical Industry, 2016, 44(6): 56-59. doi: 10.3969/j.issn.1005-9598.2016.06.015
    [13]
    Ling S K, Kwan A K H. Adding limestone fines as cementitious paste replacement to lower carbon footprint of SCC[J]. Construction and Building Materials, 2016, 111: 326-336. doi: 10.1016/j.conbuildmat.2016.02.072
    [14]
    Islam A, Alengaram U J, Jumaat M Z, et al. Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete[J]. Construction and Building Materials, 2015, 101: 503-521. doi: 10.1016/j.conbuildmat.2015.10.026
    [15]
    刘巧玲. 矿物掺合料对水泥基材料性能影响研究[J]. 粉煤灰综合利用, 2019, 32(4): 33-37, 92. doi: 10.3969/j.issn.1005-8249.2019.04.009

    Liu Qiaoling. Study on mineral admixture on the performance of cement-based materials[J]. Fly Ash Comprehensive Utilization, 2019, 32(4): 33-37, 92. doi: 10.3969/j.issn.1005-8249.2019.04.009
    [16]
    Hanehara S, Yamada K. Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology[J]. Cement and Concrete Research, 1999, 29(8): 1159-1165. doi: 10.1016/S0008-8846(99)00004-6
    [17]
    张海姣, 戴思芮, 王栋民. 两性型聚羧酸减水剂与炉渣水泥相容性的研究[J]. 新型建筑材料, 2016, 43(8): 45-48. doi: 10.3969/j.issn.1001-702X.2016.08.013

    Zhang Haijiao, Dai Sirui, Wang Dongmin. The study on compatibilities of boiler slag cement with amphoteric polycarboxylic acid superplasticizer[J]. New Building Materials, 2016, 43(8): 45-48. doi: 10.3969/j.issn.1001-702X.2016.08.013
    [18]
    李娟, 王栋民, 张力冉, 等. 两性型聚羧酸减水剂与粉煤灰的相容性研究[J]. 硅酸盐通报, 2015, 34(1): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201501033.htm

    Li Juan, Wang Dongmin, Zhang Liran, et al. Compatibility of fly ash with amphoteric polycarboxylic acid-based superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(1): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201501033.htm
    [19]
    Khatib J M, Mangat P S. Influence of superplasticizer and curing on porosity and pore structure of cement paste[J]. Cement and Concrete Composites, 1999, 21(5/6): 431-437. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0958946599000311&originContentFamily=serial&_origin=article&_ts=1433633955&md5=06c956ba3511ffe052264e0804d57975
    [20]
    钟世云, 李晋梅, 韩冬冬, 等. 掺黏度改性剂与减水剂水泥浆的zeta电位研究[J]. 建筑材料学报, 2012, 15(6): 735-740. doi: 10.3969/j.issn.1007-9629.2012.06.001

    Zhong Shiyun, Li Jinmei, Han Dongdong, et al. Study on zeta potential of cement pastes with viscosity modifying admixtures and superplasticizers[J]. Journal of Building Materials, 2012, 15(6): 735-740. doi: 10.3969/j.issn.1007-9629.2012.06.001
    [21]
    张翠, 王智, 王林龙, 等. 水泥浆体体系ζ-电位探究[J]. 硅酸盐通报, 2013, 32(7): 1264-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201307006.htm

    Zhang Cui, Wang Zhi, Wang Linlong, et al. Study on ζ-potential of cement paste system[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1264-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201307006.htm
    [22]
    任才富, 王栋民, 郑大鹏, 等. 掺超细循环流化床粉煤灰的水泥性能试验研究[J]. 矿业科学学报, 2016, 1(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201601013.htm

    Ren Caifu, Wang Dongmin, Zheng Dapeng, et al. Experimental study on properties of cement mixed with ultrafine circulating fluidized bed fly ash[J]. Journal of Mining Science and Technology, 2016, 1(1): 96-102. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201601013.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (335) PDF downloads(29) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return