Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Zhang Hao, Yang Xiaolin, Yang Feng, Zhang Batu, Yu Zhengxing, Ma Haitao. Accuracy verification methods and experimental study of ground-based real aperture radar[J]. Journal of Mining Science and Technology, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011
Citation: Zhang Hao, Yang Xiaolin, Yang Feng, Zhang Batu, Yu Zhengxing, Ma Haitao. Accuracy verification methods and experimental study of ground-based real aperture radar[J]. Journal of Mining Science and Technology, 2021, 6(6): 721-729. doi: 10.19606/j.cnki.jmst.2021.06.011

Accuracy verification methods and experimental study of ground-based real aperture radar

doi: 10.19606/j.cnki.jmst.2021.06.011
  • Received Date: 2021-02-27
  • Rev Recd Date: 2021-03-22
  • Publish Date: 2021-12-01
  • Conventional deformation monitoring means are limited by data accuracy, monitoring range, applicable environment and other factors, which seriously restrict the early warning and forecasting of landslide and collapse disasters.The microwave remote sensing method based on differential interference technology is an advanced technology for high precision monitoring of small displacements on non-contact surfaces nowadays.The self-researched ground-based real aperture radar system was applied in the research.This paper, based on the analysis of the signal model, summarized the process of target echo data processing with strong scattering characteristics and proposed a method applicable to verify the deformation monitoring accuracy of this type of radar system.Point target stationary and displacement experiments based on triangular plate angle reflector were carried out accordingly.Through the radar echo amplitude analysis and point cloud data fitting, the pre-defined target space position was discriminated and the target displacement standard value was determined, which proved the effectiveness of the method and the 0.1mm monitoring accuracy of the system.A slope monitoring experiment was carried out in Heidaigou open-pit coal mine in Inner Mongolia which combined with some point target deformation data illustrated the good practicality of the system.
  • loading
  • [1]
    李建林. 边坡工程[M]. 重庆: 重庆大学出版社, 2013: 15-18.
    [2]
    许强. 对地质灾害隐患早期识别相关问题的认识与思考[J]. 武汉大学学报: 信息科学版, 2020, 45(11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm

    Xu Qiang. Understanding and consideration of related issues in early identification of potential geohazards[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1651-1659. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202011001.htm
    [3]
    Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48. doi: 10.1016/j.isprsjprs.2014.04.001
    [4]
    孙远, 杨峰, 郑晶, 等. 基于变分模态分解和小波能量熵的微震信号降噪[J]. 矿业科学学报, 2019, 4(6): 469-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201906001.htm

    Sun Yuan, Yang Feng, Zheng Jing, et al. Research on microseismic signal denoising based on variational mode decomposition and wavelet energy entropy[J]. Journal of Mining Science and Technology, 2019, 4(6): 469-479. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201906001.htm
    [5]
    李振洪, 宋闯, 余琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm

    Li Zhenhong, Song Chuang, Yu Chen, et al. Application of satellite radar remote sensing to landslide detection and monitoring: challenges and solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907003.htm
    [6]
    郑晶, 曹子原, 姜天琪, 等. 基于深度信念神经网络的微震波到时拾取方法[J]. 矿业科学学报, 2018, 3(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201806002.htm

    Zheng Jing, Cao Ziyuan, Jiang Tianqi, et al. Deep belief neural network-based arrival picking for microseismic data[J]. Journal of Mining Science and Technology, 2018, 3(6): 521-526. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201806002.htm
    [7]
    Pieraccini M, Miccinesi L. Ground-based radar interferometry: a bibliographic review[J]. Remote Sensing, 2019, 11(9): 1029. doi: 10.3390/rs11091029
    [8]
    吴星辉, 马海涛, 张杰. 地基合成孔径雷达的发展现状及应用[J]. 武汉大学学报: 信息科学版, 2019, 44(7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm

    Wu Xinghui, Ma Haitao, Zhang Jie. Development status and application of ground-based synthetic aperture radar[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1073-1081. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201907013.htm
    [9]
    马海涛, 张亦海, 于正兴. 滑坡速度倒数法预测模型加速开始点识别及临滑时间预测研究[J]. 岩石力学与工程学报, 2021, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm

    Ma Haitao, Zhang Yihai, Yu Zhengxing. Research on the identification of acceleration starting point in inverse velocity method and the prediction of sliding time[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 355-364. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102011.htm
    [10]
    曾涛, 邓云开, 胡程, 等. 地基差分干涉雷达发展现状及应用实例[J]. 雷达学报, 2019, 8(1): 154-170. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201901017.htm

    Zeng Tao, Deng Yunkai, Hu Cheng, et al. Development state and application examples of ground-based differential interferometric radar[J]. Journal of Radars, 2019, 8(1): 154-170. https://www.cnki.com.cn/Article/CJFDTOTAL-LDAX201901017.htm
    [11]
    Monserrat O, Crosetto M, Luzi G. A review of ground-based SAR interferometry for deformation measurement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48. doi: 10.1016/j.isprsjprs.2014.04.001
    [12]
    Zheng X T, Yang X L, Ma H T, et al. Integrated ground-based SAR interferometry, terrestrial laser scanner, and corner reflector deformation experiments[J]. Sensors, 2018, 18(12): 4401. doi: 10.3390/s18124401
    [13]
    Qi L, Tan W X, Huang P P, et al. Landslide prediction method based on a ground-based micro-deformation monitoring radar[J]. Remote Sensing, 2020, 12(8): 1230. doi: 10.3390/rs12081230
    [14]
    Pasquale G De, Bernardini G, Ricci P P, et al. Ambient vibration testing of bridges by non-contact microwave interferometer[J]. Aerospace and Electronic Systems Magazine, 2010, 25(3): 19-26. doi: 10.1109/MAES.2010.5463952
    [15]
    邢诚, 徐亚明, 周校, 等. IBIS-S系统检测方法研究[J]. 测绘地理信息, 2013, 38(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304004.htm

    Xing Cheng, Xu Yaming, Zhou Xiao, et al. Research on the testing methods for IBIS-S system[J]. Journal of Geomatics, 2013, 38(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG201304004.htm
    [16]
    刁建鹏, 梁光胜. 地面雷达的位移监测试验研究[J]. 测绘科学, 2011, 36(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201102021.htm

    Diao Jianpeng, Liang Guangsheng. Experimental study on monitoring displacement by ground-based radar[J]. Science of Surveying and Mapping, 2011, 36(2): 62-64. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201102021.htm
    [17]
    占朝彬, 胡玉梅, 王涛. IBIS-S测量系统及精度分析[J]. 城市勘测, 2015(2): 119-121. doi: 10.3969/j.issn.1672-8262.2015.02.037

    Zhan Chaobin, Hu Yumei, Wang Tao. IBIS-S measurement system and its accuracy analysis[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 119-121. doi: 10.3969/j.issn.1672-8262.2015.02.037
    [18]
    周吕, 郭际明, 胡纪元, 等. 基于二维形变场的地基SAR精度验证与分析[J]. 武汉大学学报: 信息科学版, 2019, 44(2): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201902020.htm

    Zhou Lü, Guo Jiming, Hu Jiyuan, et al. Verification and analysis of ground-based SAR accuracy based on two-dimensional deformation field[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201902020.htm
    [19]
    Zhang B C, Ding X L, Werner C, et al. Dynamic displacement monitoring of long-span bridges with a microwave radar interferom-eter[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 252-264. doi: 10.1016/j.isprsjprs.2018.02.020
    [20]
    王鹏, 徐亚明, 徐进军, 等. 地基干涉雷达变形监测信号静杂波去除方法研究[J]. 测绘通报, 2014(10): 15-18, 40.

    Wang Peng, Xu Yaming, Xu Jinjun, et al. Research on static clutter removal of deformation signal obtained by ground-based interferometric radar[J]. Bulletin of Surveying and Mapping, 2014(10): 15-18, 40.
    [21]
    Scaioni M, Roncoroni F, Alba M I, et al. Ground-based real-aperture radar for deformation monitoring: experimental tests[C]// In: Gervasi O. et al. (eds) Computational Science and Its Applications-ICCSA 2017, Trieste, Italy: Springer, 2017: 137-151.
    [22]
    Zheng X T, He X F, Yang X L, et al. Terrain point cloud assisted GB-InSAR slope and pavement deformation differentiate method in an open-pit mine[J]. Sensors, 2020, 20(8): 2337. doi: 10.3390/s20082337
    [23]
    Bamler R, Hartl P. Synthetic aperture radar interferometry[J]. Inverse Problems, 1998, 14(4): 41-54. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=geology&resid=26/6/559
    [24]
    Luzi G, Pieraccini M, Mecatti D, et al. Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2454-2466. doi: 10.1109/TGRS.2004.836792
    [25]
    曲世勃, 王彦平, 谭维贤, 等. 地基SAR形变监测误差分析与实验[J]. 电子与信息学报, 2011, 33(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201101044.htm

    Qu Shibo, Wang Yanping, Tan Weixian, et al. Deformation detection error analysis and experiment using ground based SAR[J]. Journal of Electronics & Information Technology, 2011, 33(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201101044.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (224) PDF downloads(24) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return