Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Xu Mao, Zhang Xian, Fan Jingli, Gao Lin, Xu Dong. Status quo, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China[J]. Journal of Mining Science and Technology, 2021, 6(6): 659-666. doi: 10.19606/j.cnki.jmst.2021.06.004
Citation: Xu Mao, Zhang Xian, Fan Jingli, Gao Lin, Xu Dong. Status quo, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China[J]. Journal of Mining Science and Technology, 2021, 6(6): 659-666. doi: 10.19606/j.cnki.jmst.2021.06.004

Status quo, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China

doi: 10.19606/j.cnki.jmst.2021.06.004
  • Received Date: 2020-08-24
  • Rev Recd Date: 2021-05-13
  • Publish Date: 2021-12-01
  • Against the background of addressing global climate change, hydrogen has attracted much attention because of its characteristics of being clean, carbon-free and efficient.In view of China's resource endowment, hydrogen demand and emission reduction demand, the integrated application of coal-to-hydrogen and carbon capture, utilization and storage(CCUS)technology is of great significance to China's low-carbon energy transformation.The development status, opportunities and challenges of integrated application of coal-to-hydrogen and CCUS technology in China were analyzed systematically in this study to provide relevant suggestions for the development of coal-to-hydrogen with low-carbon emission in China.The results showed that: ①Compared with other hydrogen production technologies, coal-to-hydrogen with CCUS has significant cost advantages; ②Compared with hydrogen production from renewable energy, carbon footprint is the weakness of coal-to-hydrogen, even though CCUS technology can reduce carbon emissions by about 90 %; ③Xinjiang, Shanxi, Shaanxi and Inner Mongolia can be the first areas to deploy coal-to-hydrogen with CCUS technology; ④The challenges of coal-to-hydrogen with CCUS mainly include lack of public recognition and the competition with renewable energy.In the future, China should strengthen the top-level design and publicity of coal-to-hydrogen with CCUS technology, actively promote the research, development and demonstration of coal-to-hydrogen with CCUS, so as to ensure the development of China's hydrogen industry.
  • loading
  • [1]
    International Energy Agency. CO2 emissions from fuel combustion[R]. Paris: OECD/IEA, 2020.
    [2]
    International Energy Agency. Energy technology perspectives 2015: mobilizing innovation to accelerate climate action[R]. Paris: OECD/IEA, 2015.
    [3]
    《中国氢能源及燃料电池产业白皮书》编委会. 中国氢能源及燃料电池产业白皮书(2019)[R]. 北京: 中国氢能联盟, 2020.
    [4]
    《中国氢能源及燃料电池产业白皮书》编委会. 中国氢能源及燃料电池产业白皮书(2020)——碳中和战略下的低碳清洁供氢体系[R]. 北京: 中国氢能联盟, 2021.
    [5]
    黄宣旭, 练继建, 沈威, 等. 中国规模化氢能供应链的经济性分析[J]. 南方能源建设, 2020, 7(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NYNF202002002.htm

    Huang Xuanxu, Lian jijian, Shen Wei, et al. Economic analysis of China's large-scale hydrogen energy supply chain[J]. Southern Energy Construction, 2020, 7(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-NYNF202002002.htm
    [6]
    瞿丽莉, 郭俊文, 史亚丽, 等. 质子交换膜电解水制氢技术在电厂的应用[J]. 热能动力工程, 2019, 34(2): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201902032.htm

    Qu Lili, Guo Junwen, Shi Yali, et al. Application of proton exchange membrane electrolysis and hydrogen production technology in power plant[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(2): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS201902032.htm
    [7]
    张晖, 刘昕昕, 付时雨. 生物质制氢技术及其研究进展[J]. 中国造纸, 2019, 38(7): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201907017.htm

    Zhang Hui, Liu Xinxin, Fu Shiyu. Research advances in technology of hydrogen production from biomass[J]. China Pulp & Paper, 2019, 38(7): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZZ201907017.htm
    [8]
    陈子瞻, 赵汀, 刘超, 等. 煤炭制氢产业现状及我国新能源发展路径选择研究[J]. 中国矿业, 2017, 26(7): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201707008.htm

    Chen Zizhan, Zhao Ting, Liu Chao, et al. The prospect of coal to hydrogen industry and the path selection of new energy development of China[J]. China Mining Magazine, 2017, 26(7): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201707008.htm
    [9]
    贾爽, 应浩, 孙云娟, 等. 生物质水蒸气气化制取富氢合成气及其应用的研究进展[J]. 化工进展, 2018, 37(2): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201802011.htm

    Jia Shuang, Ying Hao, Sun Yunjuan, et al. Research advance in biomass steam gasification for hydrogen-rich syngas and its application[J]. Chemical Industry and Engineering Process, 2018, 37(2): 497-504. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201802011.htm
    [10]
    Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture[J]. International Journal of Hydrogen Energy, 2016, 41(9): 4969-4992. doi: 10.1016/j.ijhydene.2016.01.009
    [11]
    Zhang Quanguo, Wang Yi, Zhang Zhiping, et al. Photo-fermentative hydrogen production from crop residue: a mini review[J]. Bioresource Technology, 2017, 229: 222-230.
    [12]
    科学技术部社会发展科技司和中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图[M]. 北京: 科学出版社, 2019.
    [13]
    Yoshino Y, Harada E, Inoue K, et al. Feasibility study of "CO2 free hydrogen chain" utilizing Australian brown coal linked with CCS[J]. Energy Procedia, 2012, 29: 701-709. http://www.onacademic.com/detail/journal_1000035721161710_e112.html
    [14]
    谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201806015.htm

    Xie Xinshuo, Yang Weijuan, Shi Wei, et al. Life cycle assessment of technologies for hydrogen production—a review[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2147-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201806015.htm
    [15]
    Abánades A. The challenge of hydrogen production for the transition to a CO2-free economy[J]. Agronomy Research, 2012, 10(1): 11-16. http://agronomy.emu.ee/vol10Spec1/p10s102.pdf
    [16]
    He Chaoming, Sun Haoran, Xu Yang, et al. Hydrogen refueling station siting of expressway based on the optimization of hydrogen life cycle cost[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16313-16324. http://www.onacademic.com/detail/journal_1000039918408810_20fc.html
    [17]
    Ozbilen A, Dincer I, Rosen M A. Development of a four-step Cu-Cl cycle for hydrogen production—Part Ⅰ: exergoeconomic and exergoenvironmental analyses[J]. International Journal of Hydrogen Energy, 2016, 41(19): 7814-7825. http://www.onacademic.com/detail/journal_1000038695609210_29c3.html
    [18]
    Orhan M F. Conceptual design, analysis and optimization of nuclear-based hydrogen production via copper-chlorine thermochemical cycles[D]. Oshawa: University of Ontario Institute of Technology, 2011.
    [19]
    Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources[J]. International Journal of Hydrogen Energy, 2014, 39(1): 1-12.
    [20]
    de Olateju B, Kumar A, Secanell M. A techno-economic assessment of large scale wind-hydrogen production with energy storage in Western Canada[J]. International Journal of Hydrogen Energy, 2016, 41(21): 8755-8776. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0360319916300209&originContentFamily=serial&_origin=article&_ts=1467645261&md5=de4cfc250e4f0f8835e3f7dff70545d5
    [21]
    Alazemi J, Andrews J. Automotive hydrogen fuelling stations: an international review[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 483-499. http://smartsearch.nstl.gov.cn/paper_detail.html?id=81661e8a555f283ed4bc51b2b32fa0fb
    [22]
    International Energy Agency. The future of hydrogen: seizing today's opportunities[R]. Osaka: OECD/IEA, 2019.
    [23]
    郜婕, 赵忠德, 李育天, 等. 2019年天然气产业链发展回顾及展望[J]. 石油规划设计, 2020, 31(4): 1-4, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202004001.htm

    Gao Jie, Zhao Zhongde, Li Yutian, et al. Review and prospect of natural gas industry chain development in 2019[J]. Petroleum Planning & Engineering, 2020, 31(4): 1-4, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGH202004001.htm
    [24]
    彭苏萍, 张博, 王佟, 等. 煤炭资源与水资源[M]. 北京: 科学出版社, 2014.
    [25]
    中国标准化研究院, 全国氢能标准化技术委员会. 中国氢能产业基础设施发展蓝皮书2018: 低碳低成本氢源的实现路径[M]. 北京: 中国质检出版社, 中国标准出版社, 2018.
    [26]
    Liszka M, Malik T, Manfrida G. Energy and exergy analysis of hydrogen-oriented coal gasification with CO2 capture[J]. Energy, 2012, 45(1): 142-150. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0360544212002575&originContentFamily=serial&_origin=article&_ts=1417076225&md5=706aa88687e5b1415aaf1605545d221a
    [27]
    Liu Zhu, Guan Dabo, Wei Wei, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338.
    [28]
    李国玉, 吕鸣岗. 中国含油气盆地图集[M]. 2版. 北京: 石油工业出版社, 2002.
    [29]
    孙玉玲, 胡智慧, 秦阿宁, 等. 全球氢能产业发展战略与技术布局分析[J]. 世界科技研究与进展, 2020, 42(4): 455-465. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF202004008.htm

    Sun Yuling, Hu Zhihui, Qin Aning, et al. Analysis of strategy and technology situation on global hydrogen industry[J]. World Sci-Tech R & D, 2020, 42(4): 455-465. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKF202004008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (855) PDF downloads(122) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return