Volume 6 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Li Shan, Li Chunhui, Liang Handong, Cao Qingyi, Gao Xiulong. Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield[J]. Journal of Mining Science and Technology, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002
Citation: Li Shan, Li Chunhui, Liang Handong, Cao Qingyi, Gao Xiulong. Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield[J]. Journal of Mining Science and Technology, 2021, 6(6): 642-650. doi: 10.19606/j.cnki.jmst.2021.06.002

Traceability analysis of dustfall mercury and topsoil mercury in Wuda Coalfield

doi: 10.19606/j.cnki.jmst.2021.06.002
  • Received Date: 2020-10-06
  • Rev Recd Date: 2020-11-30
  • Publish Date: 2021-12-01
  • The Hg isotopic ratios of coal, dustfall and topsoil from coal fire area No.9 in Wuda coalfield were determined by multiple-collector inductively coupled plasma-mass spectrometry(MC-ICPMS)to explore the possible coal seam source of surface Hg in coal fire areas.The findings were that the δ202Hg of coal, dustfall and topsoil were -1.98 ‰, -1.30 ‰ and -1.26 ‰, respectively, which showed a significant mass-dependent fractionation(MDF)characteristics.And there were slightly negative anomaly mass-independent fractionation(MIF)values of surface soil, such as dustfall(Δ199Hg、Δ201Hg: -0.13 ‰、-0.11 ‰)and topsoil(Δ199Hg、Δ201Hg: -0.11 ‰、-0.10 ‰).A comparative analysis of the characteristics of Hg isotopic showed that the values of surface soil(δ200Hg、δ202Hg、Δ200Hg)were all between the No.9 coal seam and the No.10 seam, and closer to the former, which indicated that the Hg source of surface soil in coalfire area No.9 was coal seam No.9 rather than No.10.The δ202Hg of dustfall was more negative than that of coal seam No.9, which was caused not only by the kinetic fractionation effect of burning and heating process but also by the geologic chromatography effect of migration process in crack and hold.Surface sample Hg isotopes characterizations can be used to distinguish coal seam Hg and then identify the burning coal seam.
  • loading
  • [1]
    Fitzgerald W F, Engstrom D R, Mason R P, et al. The case for atmospheric mercury contamination in remote areas[J]. Environmental Science & Technology, 1998, 32: 1-7. http://www.unites.uqam.ca/gmf/globalmercuryforum/files/articles/review/General%20Review%20Fitzgerald%20Atmospheric%20Hg%20remote%20areas.pdf
    [2]
    Bergquist B A, Blum J D. Mass-dependent and-independent fractionation of Hg isotopes by photoreduction in aquatic systems[J]. Science, 2007, 318(5849): 417-420. doi: 10.1126/science.1148050
    [3]
    O'Keefe J M K, Henke K R, Hower J C, et al. CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA[J]. Science of the Total Environment, 2010, 408(7): 1628-1633. doi: 10.1016/j.scitotenv.2009.12.005
    [4]
    Liang Y C, Liang H D, Zhu S Q. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China[J]. Atmospheric Environment, 2014, 83: 176-184. doi: 10.1016/j.atmosenv.2013.09.001
    [5]
    Shan B, Wang G, Cao F, et al. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109409. doi: 10.1016/j.ecoenv.2019.109409
    [6]
    Engle M A, Radke L F, Heffern E L, et al. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA[J]. Science of the Total Environment, 2012, 420: 146-159. doi: 10.1016/j.scitotenv.2012.01.037
    [7]
    Hong X P, Liang H D, Lv S, et al. Mercury emissions from dynamic monitoring holes of underground coal fires in the Wuda Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2017, 181: 78-86. doi: 10.1016/j.coal.2017.08.013
    [8]
    Blum J D, Bergquist B A. Reporting of variations in the natural isotopic composition of mercury[J]. Analytical and Bioanalytical Chemistry, 2007, 388(2): 353-359. doi: 10.1007/s00216-007-1236-9
    [9]
    Blum J D. Applications of stable mercury isotopes to biogeochemistry[M]//Baskaran M. Hanbook of Environmental Isotope Geochemistry. Berlin, Heidelberg: Springer, 2012, 229-245.
    [10]
    Yin R S, Feng X B, Li X D, et al. Trends and advances in mercury stable isotopes as a geochemical tracer[J]. Trends in Environmental Analytical Chemistry, 2014, 2: 1-10. doi: 10.1016/j.teac.2014.03.001
    [11]
    Sun R Y, Sonke J E, Heimbürger L E, et al. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions[J]. Environmental Science & Technology, 2014, 48(13): 7660-7668. http://www.onacademic.com/detail/journal_1000036655040910_fc5e.html
    [12]
    Yin R S, Feng X B, Chen J B. Mercury stable isotopic compositions in coals from major coal producing fields in China and their geochemical and environmental implications[J]. Environmental Science & Technology, 2014, 48(10): 5565-5574. http://www.ncbi.nlm.nih.gov/pubmed/24742360/
    [13]
    冯新斌, 尹润生, 俞奔, 等. 汞同位素地球化学概述[J]. 地学前缘, 2015, 22(5): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505013.htm

    Feng Xinbin, Yin Runsheng, Yu Ben, et al. A review of Hg isotope geochemistry[J]. Earth Science Frontiers, 2015, 22(5): 124-135 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201505013.htm
    [14]
    Gehrke G E, Blum J D, Marvin-Dipasquale M. Sources of mercury to San Francisco Bay surface sediment as revealed by mercury stable isotopes[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 691-705. doi: 10.1016/j.gca.2010.11.012
    [15]
    Feng X B, Yin R S, Yu B, et al. Mercury isotope variations in surface soils in different contaminated areas in Guizhou Province, China[J]. Chinese Science Bulletin, 2013, 58(2): 249-255. doi: 10.1007/s11434-012-5488-1
    [16]
    Sun G Y, Feng X B, Yang C M, et al. Levels, sources, isotope signatures, and health risks of mercury in street dust across China[J]. Journal of Hazardous Materials, 2020, 392: 122276. doi: 10.1016/j.jhazmat.2020.122276
    [17]
    Liang Y C, Liang H D, Zhu S Q. Mercury emission from spontaneously ignited coal gangue hill in Wuda coalfield, Inner Mongolia, China[J]. Fuel, 2016, 182: 525-530. doi: 10.1016/j.fuel.2016.05.092
    [18]
    Li C H, Liang H D, Chen Y, et al. Distribution of surface soil mercury of Wuda old mining area, Inner Mongolia, China[J]. Human and Ecological Risk Assessment: an International Journal, 2018, 24(5): 1421-1439. doi: 10.1080/10807039.2017.1413536
    [19]
    Liang Y C, Zhu S Q, Liang H D. Mercury enrichment in coal fire sponge in Wuda coalfield, Inner Mongolia of China[J]. International Journal of Coal Geology, 2018, 192: 51-55. doi: 10.1016/j.coal.2018.03.006
    [20]
    李峰, 梁汉东, 赵小平, 等. 基于ASTER影像的乌达火区遥感监测研究[J]. 煤矿安全, 2016, 47(11): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611005.htm

    Li Feng, Liang Handong, Zhao Xiaoping, et al. Remote sensing monitoring research on coal fire in Wuda mine by ASTER images[J]. Safety in Coal Mines, 2016, 47(11): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MKAQ201611005.htm
    [21]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 87-90.
    [22]
    Kamunda C, Mathuthu M, Madhuku M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, south Africa[J]. International Journal of Environmental Research and Public Health, 2016, 13(7): 663. doi: 10.3390/ijerph13070663
    [23]
    McCarthy D, Edwards G C, Gustin M S, et al. An innovative approach to bioremediation of mercury contaminated soils from industrial mining operations[J]. Chemosphere, 2017, 184: 694-699. doi: 10.1016/j.chemosphere.2017.06.051
    [24]
    杨净, 王宁. 夹皮沟金矿开采区土壤重金属污染潜在生态风险评价[J]. 农业环境科学学报, 2013, 32(3): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303031.htm

    Yang Jing, Wang Ning. Assessment of potential ecological risk of heavy metals in soils from Jia-pi-Gou gold mine area, China[J]. Journal of Agro-Environment Science, 2013, 32(3): 595-600. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201303031.htm
    [25]
    Dai S F, Ren D Y, Tang Y G, et al. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2002, 51(4): 237-250. doi: 10.1016/S0166-5162(02)00098-8
    [26]
    Sherman L S, Blum J D, Johnson K P, et al. Mass-independent fractionation of mercury isotopes in Arctic snow driven by sunlight[J]. Nature Geoscience, 2010, 3: 173-177. doi: 10.1038/ngeo758
    [27]
    Sherman L S, Blum J D, Douglas T A, et al. Frost flowers growing in the Arctic ocean-atmosphere-sea ice-snow interface: 2. Mercury exchange between the atmosphere, snow, and frost flowers[J]. Journal of Geophysical Research: Atmospheres, 2012 117: 188-194. doi: 10.1029/2011JD016186/abstract
    [28]
    Chen J B, Hintelmann H, Feng X B, et al. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada[J]. Geochimica et Cosmochimica Acta, 2012, 90: 33-46. doi: 10.1016/j.gca.2012.05.005
    [29]
    Zheng W, Foucher D, Hintelmann H. Mercury isotope fractionation during volatilization of Hg(0)from solution into the gas phase[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(9): 1097-1104. doi: 10.1039/b705677j
    [30]
    Ghosh S, Schauble E A, Lacrampe Couloume G, et al. Estimation of nuclear volume dependent fractionation of mercury isotopes in equilibrium liquid-vapor evaporation experiments[J]. Chemical Geology, 2013, 336: 5-12. doi: 10.1016/j.chemgeo.2012.01.008
    [31]
    Rose C H, Ghosh S, Blum J D, et al. Effects of ultraviolet radiation on mercury isotope fractionation during photo-reduction for inorganic and organic mercury species[J]. Chemical Geology, 2015, 405: 102-111. doi: 10.1016/j.chemgeo.2015.02.025
    [32]
    Estrade N, Carignan J, Sonke J E, et al. Mercury isotope fractionation during liquid-vapor evaporation experiments[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 2693-2711. http://www.onacademic.com/detail/journal_1000035388014010_042e.html
    [33]
    Schauble E A. Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2170-2189. http://www.onacademic.com/detail/journal_1000035386806210_2781.html
    [34]
    Wiederhold J G, Cramer C J, Daniel K, et al. Equilibrium mercury isotope fractionation between dissolved Hg(Ⅱ)species and thiol-bound Hg[J]. Environmental Science & Technology, 2010, 44(11): 4191-4197. http://static.msi.umn.edu/rreports/2010/95.pdf
    [35]
    Sarzanini C, Bruzzoniti M C, Hajós P. Effect of stationary phase hydrophobicity and mobile phase composition on the separation of carboxylic acids in ion chromatography[J]. Journal of Chromatography A, 2000, 867(1/2): 131-142. http://www.researchgate.net/profile/Corrado_Sarzanini/publication/12644079_Effect_of_stationary_phase_hydrophobicity_and_mobile_phase_composition_on_the_separation_of_carboxylic_acids_in_ion_chromatography/links/00b4952a03d11d6230000000.pdf
    [36]
    Vandenboer T C, Markovic M Z, Petroff A, et al. Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection[J]. Journal of Chromatography A, 2012, 1252: 74-83. http://europepmc.org/abstract/MED/22784696
    [37]
    Zhang L, Zhu L W, Yi Z L, et al. Source rocks of the Fuyu-Yang dachengzi oil-layer in the Chaoyanggou oilfield, Songliao basin[J]. Advanced Materials Research, 2014, 962/963/964/965: 630-635.
    [38]
    Li C H, Liang H D, Liang M, et al. Mercury emissions flux from various land uses in old mining area, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2018, 192: 132-141. http://www.onacademic.com/detail/journal_1000040425287610_3f80.html
    [39]
    Li C H, Liang H D, Liang M, et al. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16652-16663. http://www.onacademic.com/detail/journal_1000040261058010_5d84.html
    [40]
    Zheng W, Hintelmann H. Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light[J]. Journal of Physical Chemistry A, 2010, 114(12): 4238-4245. http://www.onacademic.com/detail/journal_1000036577067810_9178.html
    [41]
    Sonke J E. A global model of mass independent mercury stable isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2011, 75: 4577-4590. http://www.onacademic.com/detail/journal_1000035386351910_9fd0.html
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (440) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return