Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Cheng Liqian, Cheng Hui, Miao Yiying, Sun Yiwen, Zhang Zipei. A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays[J]. Journal of Mining Science and Technology, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013
Citation: Cheng Liqian, Cheng Hui, Miao Yiying, Sun Yiwen, Zhang Zipei. A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays[J]. Journal of Mining Science and Technology, 2021, 6(4): 480-486. doi: 10.19606/j.cnki.jmst.2021.04.013

A study on synthesis of lead-free piezoelectric (K, Na)NbO3 nanorod arrays

doi: 10.19606/j.cnki.jmst.2021.04.013
  • Received Date: 2020-04-29
  • Rev Recd Date: 2021-01-19
  • Publish Date: 2021-08-01
  • As one of the lead-free piezoelectric systems, potassium sodium niobate [(K, Na)NbO3, abbreviated as KNN] has been a research interest due to its high piezoelectric property, high Curie temperature as well as the tailored phase structures. However, there are still some problems in the study of one dimensional (1D) KNN structures. For instance, the orientation growth of crystals is difficult to be controlled, the piezoelectric properties of the product should be further enhanced. In this paper, the hydrothermal synthesis method was applied to fabricate the 1D KNN structures on the Nb-doped SrTiO3 (NSTO) substrate. The hydrothermal temperature, Nb2O5 concentration and the hydrothermal time were studied, respectively, and the oriented KNN nanorod arrays (NRAs) with high quality were achieved. The results show that the KNN NRAs with single orientation, good crystallinity and high piezoelectric response can be obtained when the hydrothermal temperature is 190 ℃, the Nb2O5 concentration is 40 mL/g, and the reaction time is 18 h, respectively.
  • loading
  • [1]
    Wang Z L. Piezoelectric nanostructures: from growth phenomena to electric nanogenerators[J]. MRS Bulletin, 2007, 32(2): 109-116. doi: 10.1557/mrs2007.42
    [2]
    Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180): 809-813. doi: 10.1038/nature06601
    [3]
    Wang Z L. Piezotronic and piezophototronic effects[J]. Journal of Physical Chemistry Letters, 2010, 1(9): 1388-1393. doi: 10.1021/jz100330j
    [4]
    程丽乾, 冯美, 张博然, 等. 一维无铅压电微纳材料在能量转换领域的研究进展[J]. 科技导报, 2017, 35(8): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201708013.htm

    Cheng Liqian, Feng Mei, Zhang Boran, et al. Advances of one dimensional lead-free piezoelectric micro/nanomaterials in the field of energy conversion[J]. Science & Technology Review, 2017, 35(8): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201708013.htm
    [5]
    Wu Wenzhuo, Wen Xiaonan, Wang Zhonglin. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging[J]. Science, 2013, 340(6135): 952-957. doi: 10.1126/science.1234855
    [6]
    Zhang R, Lin L, Jing Q S, et al. Nanogenerator as an active sensor for vortex capture and ambient wind-velocity detection[J]. Energy & Environmental Science, 2012, 5(9): 8528-8533. http://pubs.rsc.org/en/content/articlelanding/2012/ee/c2ee22354f
    [7]
    Li Z T, Wang Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic Sensor[J]. Advanced Materials, 2011, 23(1): 84-89. doi: 10.1002/adma.201003161
    [8]
    Xu S, Qin Y, Xu C, et al. Self-powered nanowire devices[J]. Nature Nanotechnology, 2010, 5(5): 366-373. doi: 10.1038/nnano.2010.46
    [9]
    Wang D A, Ko H H. Piezoelectric energy harvesting from flow-induced vibration[J]. Journal of Micromechanics and Microengineering, 2010, 20(2): 025019. doi: 10.1088/0960-1317/20/2/025019
    [10]
    李祥春, 张良, 聂百胜, 等. 不同应力和瓦斯压力下煤的相对介电常数变化规律[J]. 矿业科学学报, 2018, 3(4): 349-355. http://kykxxb.cumtb.edu.cn/article/id/158

    Li Xiangchun, Zhang Liang, Nie Baisheng, et al. Law of relative dielectric constant of coal under different stresses and gas pressures[J]. Journal of Mining Science and Technology, 2018, 3(4): 349-355. http://kykxxb.cumtb.edu.cn/article/id/158
    [11]
    李祥春, 张良, 赵建飞, 等. 瓦斯气体吸附解吸过程煤变形响应特征[J]. 矿业科学学报, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120

    Li Xiangchun, Zhang Liang, Zhao Jianfei, et al. Coal deformation characteristics in gas adsorption and desorption[J]. Journal of Mining Science and Technology, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120
    [12]
    竹涛, 刘恩彤, 王艳霞, 等. 煤矿乏风瓦斯变压吸附技术操作条件优化试验研究[J]. 矿业科学学报, 2016, 1(2): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201602013.htm

    Zhu Tao, Liu Entong, Wang Yanxia, et al. Experimental study on working parameters optimization of vacuum pressure swing adsorption technology for ventilation air methane in coal mine[J]. Journal of Mining Science and Technology, 2016, 1(2): 196-202 https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201602013.htm
    [13]
    Ganeshkumar R, Cheah C W, Xu R Z, et al. A high output voltage flexible piezoelectric nanogenerator using porous lead-free KNbO3 nanofibers[J]. Applied Physics Letters, 2017, 111(1): 013905. doi: 10.1063/1.4992786
    [14]
    Liu B, Lu B, Chen X Q, et al. High-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3-BaTiO3 piezoelectric nanofibers[J]. Journal of Materials Chemistry A, 2017, 5(45): 23634-23640. doi: 10.1039/C7TA07570G
    [15]
    Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034. doi: 10.1002/adma.201004676
    [16]
    Zhang Y D, Pan X M, Wang Z, et al. Fast and highly sensitive humidity sensors based on NaNbO3 nanofibers[J]. RSC Advances, 2015, 5(26): 20453-20458. doi: 10.1039/C5RA00205B
    [17]
    Li J F, Wang K, Zhu F Y, et al. (K, Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges[J]. Journal of the American Ceramic Society, 2013, 96(12): 3677-3696. doi: 10.1111/jace.12715
    [18]
    晏伯武. KNN基无铅压电陶瓷材料制备的研究进展[J]. 压电与声光, 2019, 41(4): 517-523. doi: 10.3969/j.issn.1004-2474.2009.04.020

    Yan Bowu. Progress in preparation of KNN-basd lead-free piezoelectric ceramic material[J]. Piezoelectrics & Acoustooptics, 2009, 41(4): 517-523. doi: 10.3969/j.issn.1004-2474.2009.04.020
    [19]
    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87. doi: 10.1038/nature03028
    [20]
    Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K, Na)NbO3-LiTaO3 solid solution system[J]. Ferroelectrics, 2006, 338(1): 17-32. doi: 10.1080/00150190600732512
    [21]
    Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties of fine-grained Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering[J]. Journal of the American Ceramic Society, 2006, 89(2): 706-709. doi: 10.1111/j.1551-2916.2005.00743.x
    [22]
    Xu K, Li J, Lü X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics[J]. Advanced Materials, 2016, 28(38): 8519-8523. doi: 10.1002/adma.201601859
    [23]
    Guo Yiping, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectric properties of (Na0.5K0.5) NbO3-LiNbO3 ceramics[J]. Applied Physics Letters, 2004, 85(18): 4121-4123. doi: 10.1063/1.1813636
    [24]
    Guo Yiping, Kakimoto K, Ohsato H. (Na0.5K0.5NbO3)-LiTaO3 lead-free piezoelectric ceramics[J]. Materials Letters, 2005, 59(2/3): 241-244. http://www.sciencedirect.com/science/article/pii/S0167577X04007037
    [25]
    Wang X P, Wu J G, Xiao D Q, et al. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics[J]. Journal of the American Chemical Society, 2014, 136(7): 2905-2910. doi: 10.1021/ja500076h
    [26]
    Li P, Zhai J W, Shen B, et al. Ultrahigh piezoelectric properties in textured (K, Na)NbO3-based lead-free ceramics[J]. Advanced Materials, 2018, 30(8): 1705171. doi: 10.1002/adma.201705171
    [27]
    Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes[J]. Accounts of Chemical Research, 1999, 32(5): 435-445. doi: 10.1021/ar9700365
    [28]
    Cheng L Q, Wang K, Li J F. Synthesis of highly piezoelectric lead-free (K, Na)NbO3 one-dimensional perovskite nanostructures[J]. Chemical Communications, 2013, 49(38): 4003-4005. doi: 10.1039/c3cc41371c
    [29]
    Cheng L Q, Wang K, Li J F, et al. Piezoelectricity of lead-free (K, Na)NbO3 nanoscale single crystals[J]. Journal of Materials Chemistry C, 2014, 2(43): 9091-9098. doi: 10.1039/C4TC01745E
    [30]
    Sun C, Xing X R, Chen J, et al. Hydrothermal synthesis of single crystalline (K, Na)NbO3 powders[J]. European Journal of Inorganic Chemistry, 2007, 2007(13): 1884-1888. doi: 10.1002/ejic.200601131
    [31]
    Wang Z, Gu H S, Hu Y, et al. Synthesis, growth mechanism and optical properties of (K, Na)NbO3 nanostructures[J]. CrystEngComm, 2010, 12(10): 3157-3162. doi: 10.1039/c000169d
    [32]
    Rørvik P M, Grande T, Einarsrud M A. One-dimensional nanostructures of ferroelectric perovskites[J]. Advanced Materials, 2011, 23(35): 4007-4034. doi: 10.1002/adma.201004676
    [33]
    He Y H, Wang Z, Hu X K, et al. Orientation-dependent piezoresponse and high-performance energy harvesting of lead-free (K, Na)NbO3 nanorod arrays[J]. RSC Advances, 2017, 7(28): 16908-16915. doi: 10.1039/C7RA01359K
    [34]
    贺亚华. 铌酸钾钠无铅压电纳米棒阵列的可控生长、压电性能及其能量收集的研究[D]. 武汉: 湖北大学, 2017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (390) PDF downloads(36) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return