Volume 6 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
Xie Beijing, Ding Hao, Yan Zheng. Heat flow characteristics of bituminous coal adsorption and desorption process[J]. Journal of Mining Science and Technology, 2021, 6(4): 462-471. doi: 10.19606/j.cnki.jmst.2021.04.011
Citation: Xie Beijing, Ding Hao, Yan Zheng. Heat flow characteristics of bituminous coal adsorption and desorption process[J]. Journal of Mining Science and Technology, 2021, 6(4): 462-471. doi: 10.19606/j.cnki.jmst.2021.04.011

Heat flow characteristics of bituminous coal adsorption and desorption process

doi: 10.19606/j.cnki.jmst.2021.04.011
  • Received Date: 2020-09-23
  • Rev Recd Date: 2020-10-24
  • Publish Date: 2021-08-01
  • The process of coal adsorption and desorption of gas is accompanied by obvious thermal effects, and its variation pattern is of great value for the research of gas hazard prediction techniques such as coal and gas outburst prediction. Using self-designed multiparameter coal adsorption and desorption heat effect test system, we conducted pressure, temperature and heat flow test experiments for CO2, N2 and CH4 gas adsorption and desorption of bituminous coal at 0. 5 MPa, 0. 8 MPa and 1. 1 MPa, and analyzed the characteristics of heat flow changes of bituminous coal during the adsorption and desorption process. The study showed that: (1) during the whole process of adsorption and desorption of bituminous coal specimens, the change of heat flow density on the coal wall is divided into five processes: ①in the evacuation stage, the heat flow increases rapidly and then decreases slowly to 0; ②in the inflation stage, the heat flow is positively correlated with the inflation rate; ③in the adsorption stage, the heat flow is first fast up and then fast down and finally decreases slowly; ④in the deflation stage, the heat flow is positively correlated with the pressure relief rate; ⑤in the desorption stage, it is divided into two stages: the stage of fast down and slow rise. (2) The maximum heat flux values of N2, CH4, and CO2 three gases increase sequentially; for the same gas, the maximum heat flux values under the three gas pressures will increase with the increase of pressure. (3) The theoretical values of heat in the process of adsorption and desorption are always larger than the experimental values, but the overall trend is consistent. (4) The heat flux parameter has the characteristics of inflow and outflow direction vector, which is superior to the temperature index. The heat flux is consistent with the heat transfer change law, which can well characterize the change law of thermal effect of adsorption and desorption of bituminous coal, and provide reference for the research of new index of coal and gas outburst prediction.
  • loading
  • [1]
    张翔, 陶云奇. 不同温度条件下煤对瓦斯的等温吸附实验研究[J]. 煤炭工程, 2011, 43(4): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201104033.htm

    Zhang Xiang, Tao Yunqi. Experiment study on gas isothermal adsorption from coal under different temperature conditions[J]. Coal Engineering, 2011, 43(4): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201104033.htm
    [2]
    袁亮, 薛阳, 王汉鹏, 等. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治, 2020, 2(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202001001.htm

    Yuan Liang, Xue Yang, Wang Hanpeng, et al. New progress in physical simulation experiment of coal and gas outburst[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202001001.htm
    [3]
    曹代勇, 宁树正, 郭爱军, 等. 中国煤田构造格局及其基本特征[J]. 矿业科学学报, 2016, 1(1): 1-8. http://kykxxb.cumtb.edu.cn/article/id/4

    Cao Daiyong, Ning Shuzheng, Guo Aijun, et al. Basic characteristics of coalfield tectonic framework in China[J]. Journal of Mining Science and Technology, 2016, 1(1): 1-8. http://kykxxb.cumtb.edu.cn/article/id/4
    [4]
    蒋承林, 高艳忠, 陈松立, 等. 矿井瓦斯动力灾害的分级与分级鉴定指标的研究[J]. 煤炭学报, 2007, 32(2): 159-162. doi: 10.3321/j.issn:0253-9993.2007.02.011

    Jiang Chenglin, Gao Yanzhong, Chen Songli, et al. Study on classification and identification indexes about gas dynamical disaster in coal mine[J]. Journal of China Coal Society, 2007, 32(2): 159-162. doi: 10.3321/j.issn:0253-9993.2007.02.011
    [5]
    聂尧, 赵越超. 煤中多组分混合气体竞争吸附研究现状及工程应用[J]. 矿业科学学报, 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264

    Nie Yao, Zhao Yuchao. Research status and engineering application of competitive adsorption of multicomponent mixed gases in coal, [J]. Journal of Mining Science and Technology 2020, 5(1): 45-57. http://kykxxb.cumtb.edu.cn/article/id/264
    [6]
    聂百胜, 何学秋, 王恩元, 等. 煤与瓦斯突出预测技术研究现状及发展趋势[J]. 中国安全科学学报, 2003, 13(6): 40-43. doi: 10.3969/j.issn.1003-3033.2003.06.012

    Nie Baisheng, He Xueqiu, Wang Enyuan, et al. Present situation and progress trend of prediction technology of coal and gas outburst[J]. China Safety Science Journal, 2003, 13(6): 40-43. doi: 10.3969/j.issn.1003-3033.2003.06.012
    [7]
    李祥春, 张良, 赵建飞, 等. 瓦斯气体吸附解吸过程煤变形响应特征[J]. 矿业科学学报, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120

    Li Xiangchun, Zhang Liang, Zhao Jianfei, et al. Coal deformation characteristics in gas adsorption and desorption[J]. Journal of Mining Science and Technology, 2018, 3(1): 46-54. http://kykxxb.cumtb.edu.cn/article/id/120
    [8]
    Dong Guowei, Liang Xuanming, Wang Qixiang, et al. A new method for predicting coal and gas outbursts[J]. Shock and Vibration, 2020, 2020: 1-10. http://www.researchgate.net/publication/342445706_A_New_Method_for_Predicting_Coal_and_Gas_Outbursts
    [9]
    Ma Yankun, Nie Baisheng, He Xueqiu, et al. Mechanism investigation on coal and gas outburst: an overview[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(7): 872-887. doi: 10.1007/s12613-019-1956-9
    [10]
    Feng Zengchao, Cai Tingting, Zhou Dong, et al. Temperature and deformation changes in anthracite coal after methane adsorption[J]. Fuel, 2017, 192: 27-34. doi: 10.1016/j.fuel.2016.12.005
    [11]
    Zhang Chaolin, Xu Jiang, Peng Shoujian, et al. Dynamic evolution of coal reservoir parameters in CBM extraction by parallel boreholes along coal seam[J]. Transport in Porous Media, 2018, 124(2): 325-343. doi: 10.1007/s11242-018-1067-5
    [12]
    郭立稳, 俞启香, 蒋承林, 等. 煤与瓦斯突出过程中温度变化的实验研究[J]. 岩石力学与工程学报, 2000, 19(3): 366-368. doi: 10.3321/j.issn:1000-6915.2000.03.024

    Guo Liwen, Yu Qixiang, Jiang Chenglin, et al. Testing study on the variation of coal temperature during the process of coal and gas outburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3): 366-368. doi: 10.3321/j.issn:1000-6915.2000.03.024
    [13]
    梁冰, 刘建军. 煤和瓦斯突出发生过程中的温度作用机理研究[J]. 中国地质灾害与防治学报, 2000, 11 (1): 79-82. doi: 10.3969/j.issn.1003-8035.2000.01.018

    Liang Bing, Liu Jianjun. The study on mechanism of temperature effect in the process of coal and gas outburst[J]. The Chinese Journal of Geological Hazard and Control, 2000, 11(1): 79-82. doi: 10.3969/j.issn.1003-8035.2000.01.018
    [14]
    李希建, 林柏泉. 煤与瓦斯突出机理研究现状及分析[J]. 煤田地质与勘探, 2010, 38(1): 7-13. doi: 10.3969/j.issn.1001-1986.2010.01.002

    Li Xijian, Lin Baiquan. Status of research and analysis on coal and gas outburst mechanism[J]. Coal Geology & Exploration, 2010, 38(1): 7-13. doi: 10.3969/j.issn.1001-1986.2010.01.002
    [15]
    李先国. 物理化学[M]. 北京: 北京大学出版社, 2016.
    [16]
    毛伟, 张立德. 焦耳-汤姆逊系数计算方法研究[J]. 特种油气藏, 2002, 9(5): 44-46, 107. doi: 10.3969/j.issn.1006-6535.2002.05.013

    Mao Wei, Zhang Lide. A method study for calculating Joule-Thompson coefficient[J]. Special Oil & Gas Reservoirs, 2002, 9(5): 44-46, 107. doi: 10.3969/j.issn.1006-6535.2002.05.013
    [17]
    马庆芳. 实用热物理性质手册[M]. 北京: 中国农业机械出版社, 1986.
    [18]
    杨涛, 聂百胜. 煤粒吸附瓦斯过程中的温度变化研究[J]. 煤炭学报, 2015, 40(S2): 380-385. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S2011.htm

    Yang Tao, Nie Baisheng. Temperature variation tests during the gas adsorption process[J]. Journal of China Coal Society, 2015, 40(S2): 380-385. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2015S2011.htm
    [19]
    刘纪坤, 何学秋, 王翠霞. 红外技术应用煤体瓦斯解吸过程温度测量[J]. 辽宁工程技术大学学报: 自然科学版, 2013, 32(9): 1161-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201309003.htm

    Liu Jikun, He Xueqiu, Wang Cuixia. Measurement of temperature variation in coal gas desorption based on infraed imaging technology[J]. Journal of Liaoning Technical University: Natural Science, 2013, 32(9): 1161-1165. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY201309003.htm
    [20]
    解北京, 王广宇, 严正. 粉煤吸附甲烷温度变化规律试验研究[J]. 煤炭科学技术, 2019, 47(8): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201908015.htm

    Xie Beijing, Wang Guangyu, Yan Zheng. Experimental study on temperature change law of pulverized coal during adsorbing methane[J]. Coal Science and Technology, 2019, 47(8): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201908015.htm
    [21]
    杨绪红, 李月生. 气体绝热自由膨胀过程中温度的变化[J]. 咸宁师专学报, 2002, 22(6): 75-76. doi: 10.3969/j.issn.1006-5342.2002.06.023

    Yang Xuhong, Li Yuesheng. A process of free expansion in A container which insulates from heat[J]. Journal of Xianning Teachers College, 2002, 22(6): 75-76. doi: 10.3969/j.issn.1006-5342.2002.06.023
    [22]
    邓成香, 宋鹏云, 马爱琳. 干气密封的实际气体焦耳-汤姆逊效应分析[J]. 化工学报, 2016, 67(9): 3833-3842. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201609039.htm

    Deng Chengxiang, Song Pengyun, Ma Ailin. Analysis of Joule-Thomson effect of real gas system sealed by dry gas[J]. CIESC Journal, 2016, 67(9): 3833-3842. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ201609039.htm
    [23]
    霍留鹏, 岳高伟, 王宾宾. 瓦斯泄压过程中的焦耳-汤姆逊效应[J]. 煤炭科学技术, 2017, 45(12): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201712022.htm

    Huo Liupeng, Yue Gaowei, Wang Binbin. Joule-Thomson effect of gas pressure releasing process[J]. Coal Science and Technology, 2017, 45(12): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201712022.htm
    [24]
    马砺, 李珍宝, 邓军, 等. 常压下煤对N2, CO2, CH4单组分气体吸附特性研究[J]. 安全与环境学报, 2015, 15(2): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201502017.htm

    Ma Li, Li Zhenbao, Deng Jun, et al. On the characteristic features of the adsorption capacity of the coal for the singular component gases of CH4, CO2, N2 under regular pressures[J]. Journal of Safety and Environment, 2015, 15(2): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201502017.htm
    [25]
    刘志祥, 冯增朝. 煤体对瓦斯吸附热的理论研究[J]. 煤炭学报, 2012, 37(4): 647-653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204023.htm

    Liu Zhixiang, Feng Zengchao. Theoretical study on adsorption heat of methane in coal[J]. Journal of China Coal Society, 2012, 37(4): 647-653. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201204023.htm
    [26]
    Liu S M, Harpalani S. Permeability prediction of coalbed methane reservoirs during primary depletion[J]. International Journal of Coal Geology, 2013, 113: 1-10. doi: 10.1016/j.coal.2013.03.010
    [27]
    舒才, 王宏图, 施峰, 等. 基于两能态吸附热理论的煤层瓦斯流动热-流-固多场耦合模型[J]. 岩土力学, 2017, 38(11): 3197-3204. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711016.htm

    Shu Cai, Wang Hongtu, Shi Feng, et al. A fully coupled thermal-hydrological-mechanical model for gas seepage based on binary-energy-state heat theory[J]. Rock and Soil Mechanics, 2017, 38(11): 3197-3204. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711016.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (283) PDF downloads(20) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return